2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 7Citation - Scopus: 7Dynamical and Passive Characteristics of the Ag/Tlgases Rf Resonators(Wiley-v C H verlag Gmbh, 2012) Qasrawi, A. F.; Elayyat, S. M. S.; Gasanly, N. M.Ag contacts on the surface of the TlGaSeS single crystals are observed to exhibit Schottky characteristics. The ideality factor of the Ag/ TlGaSeS/Ag device decreased from 5.2 to 1.3 by the reduction of series resistance effect on the I-V characteristics. Cheung's model analysis revealed a series resistance and barrier height of 40.6 KO and 0.32 V, respectively. The device was run on the passive mode by injection with an alternating ac signal of variable frequency in the frequency range of 0-120 MHz and recoding the device capacitance. Several resonance-antiresonance positions in the range of 27-350 KHz were observed. The tangent loss factor of the passive device was observed to decrease with increasing frequency. It exhibited a very low loss value of the order of 10-5 at 120 MHz. Such property is a characteristic of high performance tunable device being suitable as processor clock controller.Article Citation - WoS: 5Citation - Scopus: 5Dielectric and photo-dielectric properties of TlGaSeS crystals(indian Acad Sciences, 2014) Qasrawi, A. F.; Abu-Zaid, Samah F.; Ghanameh, Salam A.; Gasanly, N. M.The room temperature, dark and photo-dielectric properties of the novel crystals TlGaSeS are investigated in the frequency, intensity and biasing voltage having ranges of similar to 1-120 MHz, 14-40 klux and 0-1 V, respectively. The crystals are observed to exhibit a dark high frequency effective dielectric constant value of similar to 10.65 x 10(3) with a quality factor of similar to 8.84 x 10(4) at similar to 120 MHz. The dielectric spectra showed sharp resonance-antiresonance peaks in the frequency range of similar to 25-250 kHz. When photoexcited, pronounced increase in the dielectric constant and in the quality factor values with increasing illumination intensity are observed. Signal amplification up to similar to 33% with improved signal quality up to similar to 29% is attainable via photoexcitation. On the other hand, the illuminated capacitance voltage characteristics of the crystals reflected a downward shift in the voltage biasing and in the built-in voltage of the device that is associated with increase in the uncompensated carrier density. The increase in the dielectric constant with increasing illumination intensity is ascribed to the decrease in the crystal's resistance as a result of increased free carrier density. The light sensitivity of the crystals, the improved dielectric properties and the lower biasing voltage obtained via photoexcitation and the well-enhanced signal quality factor of the crystals make them promising candidates for optical communication systems.

