7 results
Search Results
Now showing 1 - 7 of 7
Article Citation - WoS: 5Citation - Scopus: 5Identification of Shallow Trap Centers in Inse Single Crystals and Investigation of Their Distribution: a Thermally Stimulated Current Spectroscopy(Elsevier, 2024) Isik, M.; Gasanly, N. M.Identification of trap centers in semiconductors takes great importance for improving the performance of electronic and optoelectronic devices. In the present study, we employed the thermally stimulated current (TSC) method within a temperature range of 10-280 K to explore trap centers in InSe crystal-a material with promising applications in next-generation devices. Our findings revealed the existence of two distinct hole trap centers within the InSe crystal lattice located at 0.06 and 0.14 eV. Through the leveraging the T-stop method, we offered trap distribution parameters of revealed centers. The results obtained from the experimental methodology employed to investigate the distribution of trap centers indicated that one of the peaks extended between 0.06 and 0.13 eV, while the other spanned from 0.14 to 0.31 eV. Notably, our research uncovers a remarkable variation in trap density, spanning one order of magnitude, for every 10 and 88 meV of energy variation. The results of our research present the characteristics of shallow trap centers in InSe, providing important information for the design and optimization of InSe-based optoelectronic devices.Article Citation - WoS: 2Citation - Scopus: 2Optical Characterization of Nabi(moo4)2< Crystal by Spectroscopic Ellipsometry(Springer Heidelberg, 2024) Guler, I.; Isik, M.; Gasanly, N. M.The compound NaBi(MoO4)(2) has garnered significant interest in optoelectronic fields. This study employs spectroscopic ellipsometry to thoroughly examine the linear and nonlinear optical characteristics of NaBi(MoO4)(2) crystals, offering detailed insights into their optical behavior. Our investigation presents a precise method for discerning the crystal's spectral features, revealing the spectral variations of key optical parameters such as refractive index, extinction coefficient, dielectric function, and absorption coefficient within the 1.2-5.0 eV range. Through analysis, we determined optical attributes including bandgap energy, critical point energy, and single oscillator parameters. Additionally, we explored the nonlinear optical properties of NaBi(MoO4)(2), unveiling potential applications such as optoelectronic devices, frequency conversion, and optical sensors. This study enhances comprehension of optical properties of NaBi(MoO4)(2), underscoring its significance in future optical and electronic advancements.Article Citation - WoS: 2Citation - Scopus: 2Thermoluminescence Dose Response and Kinetic Parameters of Gd-Doped Zno Nanoparticles(Iop Publishing Ltd, 2024) Isik, M.; Yildirim, T.; Guner, M.; Gasanly, N. M.This study investigates the thermoluminescence (TL) properties of undoped and gadolinium (Gd)-doped zinc oxide (ZnO) nanoparticles synthesized via sol-gel method. The crystal structure of both synthesized nanoparticles was determined as hexagonal from x-ray diffraction pattern. The TL curve of undoped ZnO nanoparticles reveals two distinct peaks at 400.5 and 479.2 K, each associated with trap centers featuring activation energies of 0.84 and 1.05 eV. TL curve of the Gd:ZnO introduced three peaks associated with trap centers at 1.10, 1.18, and 1.25 eV. Notably, the absence of the 0.84 eV trap center in Gd-doped ZnO implies a modification in the defect structure. Considering the effect of Gd-doping on the band structure and potential minor errors in the analysis results, it was stated that the traps at 1.05 and 1.10 eV levels belonged to the same defect center. Dose-dependent investigations for undoped and Gd-doped ZnO nanoparticles reveal linear behaviors in the TL response, highlighting their potential for dosimetric applications. Photoluminescence spectra of both compounds exhibited emission peaks around 455 and 577 nm, which were associated with native defect centers.Article Citation - WoS: 5Citation - Scopus: 5Revealing Defect Centers in Pbwo4 Single Crystals Using Thermally Stimulated Current Measurements(Aip Publishing, 2024) Isik, M.; Gasanly, N. M.The trap centers have a significant impact on the electronic properties of lead tungstate (PbWO4), suggesting their crucial role in optoelectronic applications. In the present study, we investigated and revealed the presence of shallow trap centers in PbWO4 crystals through the utilization of the thermally stimulated current (TSC) method. TSC experiments were performed in the 10-280 K range by applying a constant heating rate. The TSC spectrum showed the presence of a total of four peaks, two of which were overlapped. As a result of analyzing the TSC spectrum using the curve fit method, the activation energies of revealed centers were found as 0.03, 0.11, 0.16, and 0.35 eV. The trapping centers were associated with hole centers according to the comparison of TSC peak intensities recorded by illuminating the opposite polarity contacts. Our findings not only contribute to the fundamental understanding of the charge transport mechanisms in PbWO4 crystals but also hold great promise for enhancing their optoelectronic device performance. The identification and characterization of these shallow trap centers provide valuable insights for optimizing the design and fabrication of future optoelectronic devices based on PbWO4.Article Citation - WoS: 24Citation - Scopus: 27Temperature-Dependent Tuning of Band Gap of Fe3o4 Nanoparticles for Optoelectronic Applications(Elsevier, 2024) Delice, S.; Isik, M.; Gasanly, N. M.We have investigated structural, morphological and temperature dependent absorption characteristics of Fe3O4 nanoparticles. X-ray diffraction pattern exhibited six diffraction peaks belonging to the cubic phase structure with lattice parameter of a = 8.1602 angstrom. Spectral variation of absorption coefficient were utilized to achieve Tauc and spectral derivative analyses providing the band gap of the Fe3O4 at varying temperature. The band gap of Fe3O4 nanoparticles was found around 2.08 eV at 300 K and around 2.14 eV at 10 K. The band gap variation with applied temperatures between 10 and 300 K were also investigated using Varshni relation.Article Citation - WoS: 13Citation - Scopus: 16Unveiling the Application Potential of Pbmo0.75w0.25< Crystal: Linear and Nonlinear Optical Properties Through Ellipsometry(Elsevier, 2024) Isik, M.; Gasanly, N. M.PbMo0.75W0.25O4 compound is formed by replacing one quarter of the Mo atoms in the PbMoO4 with W atoms and has significant potential for optoelectronic applications. Optical properties of PbMo0.75W0.25O4 single crystal have been systematically investigated using ellipsometry measurements in the spectral range of 2.4-5.4 eV. The linear optical parameters, including refractive index, extinction coefficient, and absorption coefficient, were extracted from the obtained ellipsometry data. By analyzing spectral dependence of these parameters, band gap energy, critical point energy, and single effective oscillator parameters were determined. The refractive index spectrum was analyzed in the below band gap energy region by considering Cauchy and Sellmeier models. Additionally, nonlinear optical values were calculated, providing a comprehensive understanding of the optical properties of the PbMo0.75W0.25O4 single crystal. This study not only contributes to the fundamental understanding of the crystal's optical properties but also has potential implications for applications in optoelectronic devices and photovoltaics.Article Citation - WoS: 3Citation - Scopus: 2Characterization of Linear and Nonlinear Optical Properties of Nabi(wo4)2 Crystal by Spectroscopic Ellipsometry(Elsevier, 2024) Isik, M.; Işık, Mehmet; Guler, I.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringNaBi(WO4)2 compound has been a material of considerable attention in optoelectronic applications. The present research, in which we examined the linear and nonlinear optical properties of NaBi(WO4)2 crystal using the spectroscopic ellipsometry method, elucidates the optical behavior of the crystal in detail. Our work provides a sensitive approach to determine the spectral characteristic of the crystal. The spectral dependence of various optical parameters such as refractive index, extinction coefficient, dielectric function and absorption coefficient was reported in the range of 1.2-5.0 eV. Optical values such as bandgap energy, critical point energy, single oscillator parameters were obtained as a result of the analyses. In addition to linear optical properties, we also investigated the nonlinear optical behavior of NaBi(WO4)2 and shed new light on the potential applications of the crystal. Absorbance and photoluminescence spectra of the crystal were also reported to characterize optical, electronic and emission behavior of the compound. Our findings may form the basis for a number of technological applications such as optoelectronic devices, frequency conversion, and optical sensors. This research contributes to a better understanding of the optical properties of NaBi(WO4)2 crystal, highlighting the material's role in future optical and electronic technologies.
