Search Results

Now showing 1 - 10 of 37
  • Article
    Citation - Scopus: 1
    Some Remarks About the Existence of Coupled g-coincidence Points
    (Springeropen, 2015) Erhan, Inci M.; Roldan-Lopez-de-Hierro, Antonio-Francisco; Shahzad, Naseer
    Very recently, in a series of subsequent papers, Nan and Charoensawan introduced the notion of g-coincidence point of two mappings in different settings (metric spaces and G-metric spaces) and proved some theorems in order to guarantee the existence and uniqueness of such kind of points. Although their notion seems to be attractive, in this paper, we show how this concept can be reduced to the unidimensional notion of coincidence point, and how their main theorems can be seen as particular cases of existing results. Moreover, we prove that the proofs of their main statements have some gaps.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    Common Fixed Point of Multifunctions on Partial Metric Spaces
    (Springer international Publishing Ag, 2015) Aleomraninejad, S. Mohammad Ali; Erhan, Inci M.; Kutbi, Marwan A.; Shokouhnia, Masoumeh
    In this paper, some multifunctions on partial metric space are defined and common fixed points of such multifunctions are discussed. The results presented in the paper generalize some of the existing results in the literature. Several conclusions of the main results are given.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 8
    Coupled Coincidence Point and Coupled Fixed Point Theorems via Generalized Meir-Keeler Type Contractions
    (Hindawi Ltd, 2012) Aydi, Hassen; Karapinar, Erdal; Erhan, Inci M.
    We prove coupled coincidence point and coupled fixed point results of F : X x X -> X and g : X -> X involving Meir-Keeler type contractions on the class of partially ordered metric spaces. Our results generalize some recent results in the literature. Also, we give some illustrative examples and application.
  • Article
    Citation - WoS: 40
    Citation - Scopus: 50
    Fixed Points of (ψ, Φ) Contractions on Rectangular Metric Spaces
    (Springer international Publishing Ag, 2012) Erhan, Inci M.; Karapinar, Erdal; Sekulic, Tanja
    Existence and uniqueness of fixed points of a general class of (psi, phi) contractive mappings on complete rectangular metric spaces are discussed. One of the theorems is a generalization of a fixed point theorem recently introduced by Lakzian and Samet. Fixed points of (psi, phi) contractions under conditions involving rational expressions are also investigated. Several particular cases and applications as well as an illustrative example are given.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 20
    The Taylor Series Method and Trapezoidal Rule on Time Scales
    (Elsevier Science inc, 2020) Georgiev, Svetlin G.; Erhan, Inci M.
    The Taylor series method for initial value problems associated with dynamic equations of first order on time scales with delta differentiable graininess function is introduced. The trapezoidal rule for the same types of problems is derived and applied to specific examples. Numerical results are presented and discussed. (c) 2020 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 51
    Citation - Scopus: 58
    F-Contraction Mappings on Metric-Like Spaces in Connection With Integral Equations on Time Scales
    (Springer-verlag Italia Srl, 2020) Agarwal, Ravi P.; Aksoy, Umit; Karapinar, Erdal; Erhan, Inci M.
    In this paper we investigate the existence and uniqueness of fixed points of certain (phi,F)-type contractions in the frame of metric-like spaces. As an application of the theorem we consider the existence and uniqueness of solutions of nonlinear Fredholm integral equations of the second kind on time scales. We also present a particular example which demonstrates our theoretical results.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 4
    Fixed Point Theorems for Mappings With a Contractive Iterate at a Point in Modular Metric Spaces
    (House Book Science-casa Cartii Stiinta, 2022) Karapinar, Erdal; Aksoy, Umit; Fulga, Andreea; Erhan, Inci M.
    In this manuscript, we introduce two new types of contraction, namely, w-contraction and strong Sehgal w-contraction, in the framework of modular metric spaces. We indicate that under certain assumptions, such mappings possess a unique fixed point. For the sake of completeness, we consider examples and an application to matrix equations.
  • Article
    Citation - WoS: 21
    Citation - Scopus: 23
    Best Proximity Points of Generalized Almost Ψ-Geraghty Contractive Non-Self
    (Springer international Publishing Ag, 2014) Aydi, Hassen; Karapinar, Erdal; Erhan, Inci M.; Salimi, Peyman
    In this paper, we introduce the new notion of almost psi-Geraghty contractive mappings and investigate the existence of a best proximity point for such mappings in complete metric spaces via the weak P-property. We provide an example to validate our best proximity point theorem. The obtained results extend, generalize, and complement some known fixed and best proximity point results from the literature.
  • Article
    ON A GENERALIZED α-ADMISSIBLE RATIONAL TYPE CONTRACTIVE MAPPING
    (Yokohama Publ, 2016) Erhan, Inci M.; Kir, Mehmet
    Recently, many generalized contractive conditions which involve rational contractive inequalities have been introduced in the context of partially ordered metric spaces. In this paper, we aim to give a generalized rational contractive condition which involves some of these results without need of extra restrictions.
  • Article
    Citation - WoS: 141
    Citation - Scopus: 144
    Uniqueness of Solution for Higher-Order Nonlinear Fractional Differential Equations With Multi-Point and Integral Boundary Conditions
    (Springer-verlag Italia Srl, 2021) Sevinik-Adiguzel, Rezan; Aksoy, Umit; Karapinar, Erdal; Erhan, Inci M.
    This study is devoted to the development of alternative conditions for existence and uniqueness of nonlinear fractional differential equations of higher-order with integral and multi-point boundary conditions. It uses a novel approach of employing a fixed point theorem based on contractive iterates of the integral operator for the corresponding fixed point problem. We start with developing an existence-uniqueness theorem for self-mappings with contractive iterate in a b-metric-like space. Then, we obtain the unique solvability of the problem under suitable conditions by utilizing an appropriate b-metric-like space.