Search Results

Now showing 1 - 2 of 2
  • Conference Object
    Petri Net Modeling and Simulation of Walking Behaviour for Design of a Bioinspired Robot Dog
    (SciTePress, 2016) Erden,Z.; Araz,M.
    Research in behavior-based design faces many challenges regarding the AIDS in conceptual design of biorobots, representation of a biological system,s behavior in a well formed modeling tool and therefore providing systematic transformation of this behavior into robot design. This paper reports a research that focuses on the development of a Petri Net model to represent a biological system,s behavior. The model is based on real time data collected from an experiment in which a dog is walking on a treadmill with a speed of 1km/h. The model has the ability of simulating the real time rhythm of dog's walking behavior utilizing colors and numbers as well as the step-by-step simulation. The aim is to observe the behavior of a walking dog in time domain as an early stage of conceptual design of a bioinspired robot dog. Main challenge is to develop a methodology to guide designer towards more creative designs based on bioinspired design ideas. The presented work is an early attempt to initiate a systematic approach towards the stated goal. © Copyright 2016 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.
  • Conference Object
    Developing an Analysis Process for Biological Systems To Design Biorobots - a Case Study of Human Hand Gripping Motion
    (2013) Eroǧlu,A.K.; Erden,Z.; Erden,A.
    The fundamental reasoning behind the use of bioinspired design (BID) is to increase creativity (novelty and usefulness) and innovation in engineering. Within the context of BID, development of systematic process for analyzing biological systems and transferring knowledge, which is obtained from the analysis of biological systems, into engineering is compulsory. This paper presents developing a process for the analysis of biological systems for design of biorobots. Preparing, collecting, and organizing are the main steps of this process and applied in a case study which involves gripping motion of a human hand. An experimental set-up with a high-speed camera is constructed to obtain the components of knowledge: morphology, function and behavior. This knowledge will be later used to design a wearable hand in prospective projects.