2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 7Citation - Scopus: 9Determination of Coulomb's Friction Coefficient Directly From Cylinder Compression Tests(Assoc Mechanical Engineers Technicians Slovenia, 2016) Duran, Deniz; Karadogan, CelalettinIn this paper, a new method is proposed for the determination of Coulomb's friction coefficient directly from cylinder compression tests. It is based on measuring the immigrated contact area (ICA), which is defined as the lateral surface that comes into contact with the platens after deformation. Preliminary sensitivity analyses showed that ICA is only a function of friction and the strain-hardening exponent at room temperature when a power law relation between the true stress and the true plastic strain is considered. Through intensive numerical simulations by using a code-driven simulation environment, an inverse calculation is done which makes the determination of the friction coefficient possible by using ICA and the strain-hardening exponent of the investigated material. At the end of compression, ICA is usually clearly visible without any precautions; thus, a simplified script is supplied which calculates ICA through digital image analysis made on the end faces of the compressed specimens. This paper includes the complete procedure to determine Coulomb's friction coefficient and a script in which the proposed method is embedded entirely. In addition, practical case studies demonstrated the ease of applicability of the proposed method by employing different materials.Article Citation - WoS: 4Citation - Scopus: 4Predicting and Measuring Surface Enlargement in Forward Rod Extrusion(Asme, 2016) Duran, Deniz; Ozdemir, IzzetSurface enlargement during bulk metal forming processes is one of the key parameters controlling the tribology at the tool-workpiece interface. Not only the surface roughness evolution but also the integrity of the lubricant layer critically reposes on surface enlargement. As an attempt to address this issue, in the first part of this work, a general, deformation gradient based surface enlargement description is implemented in a commercial finite element program. In the second part, forward rod extrusion tests with different area reductions are conducted using customized steel workpieces in which cylindrical copper rods are embedded through the depth. By sectioning the extruded parts and by identifying the position of the copper rods on the lateral surface, average surface enlargement values could be measured locally at different positions along the extrudate. Comparison of experiments and numerical predictions reveal that the deformation gradient based description performs reasonably well in capturing surface enlargement profiles both qualitatively and quantitatively.

