Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 14
    Dissociative Adsorption of Water at (211) Stepped Metallic Surfaces by First-Principles Simulations
    (Amer Chemical Soc, 2017) Pekoz, Rengin; Donadio, Davide
    Steps at high-index metallic surfaces display higher chemical reactivity than close-packed surfaces and may give rise to selective adsorption and partial dissociation of water. Inspired by differential desorption experiments, we have studied the adsorption and dissociation of water clusters and one-dimensional wires on Pt(211) by density functional theory and molecular dynamics simulations. These calculations reveal that water at the step edges of Pt(211) adsorbs more weakly than at Pt(221), but partial dissociation of adsorbed water clusters is energetically competitive. We observe that the one-dimensional structure proposed experimentally can be realized only by partially dissociated water wires. In addition, weaker adsorption allows the formation of structures in which a number of water molecules detach from the step and form weak hydrogen bonds with the terrace. This study is further extended to the energetics of small water clusters on (211) surfaces of Ir, Rh, and Pd.
  • Article
    Citation - WoS: 27
    Effect of Van Der Waals Interactions on the Chemisorption and Physisorption of Phenol and Phenoxy on Metal Surfaces
    (Aip Publishing, 2016) Pekoz, Rengin; Donadio, Davide
    The adsorption of phenol and phenoxy on the (111) surface of Au and Pt has been investigated by density functional theory calculations with the conventional PBE functional and three different non-local van derWaals (vdW) exchange and correlation functionals. It is found that both phenol and phenoxy on Au(111) are physisorbed. In contrast, phenol on Pt(111) presents an adsorption energy profile with a stable chemisorption state and a weakly metastable physisorbed precursor. While the use of vdW functionals is essential to determine the correct binding energy of both chemisorption and physisorption states, the relative stability and existence of an energy barrier between them depend on the semi-local approximations in the functionals. The first dissociation mechanism of phenol, yielding phenoxy and atomic hydrogen, has been also investigated, and the reaction and activation energies of the resulting phenoxy on the flat surfaces of Au and Pt were discussed. Published by AIP Publishing.