2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - Scopus: 3Protective Effects of Metformin in Non-Diabetic Rats With Experimentally Induced Lower Extremity Ischemia-Reperfusion Injury(Turkish National Vascular and Endovascular Surgery Society, 2025) Küçük, Ayşegül; Dursun, Alı Dogan; Arslan, Mustafa; Sezen, Şaban Cem; Yıldırım, Alperen Kutay; Özer, Abdullah; Demirtas, HuseyinAim: Lower extremity ischemia-reperfusion (IR) injury can lead to substantial skeletal muscle damage and systemic complications, primarily driven by oxidative stress and inflammation. In addition to its well-known glucose-lowering effects, metformin possesses antioxidant and anti-inflammatory properties that may confer protection against tissue damage caused by IR. This study aims to evaluate the potential protective effects of metformin on skeletal muscle injury using a rat model of lower extremity IR.Material and Methods: A total of twenty-four male Wistar albino rats were randomly divided into four experimental groups: Control (C), Ischemia-Reperfusion (IR), IR with metformin at 4 mg/kg (IR+M4), and IR with metformin at 8 mg/kg (IR+M8). Ischemia was induced by clamping the infrarenal aorta for 45 minutes, followed by a reperfusion period of 120 minutes. In the treatment groups, metformin was administered intraperitoneally at the onset of ischemia. Gastrocnemius muscle tissues were harvested for subsequent histopathological and biochemical evaluations, including measurements of Total Antioxidant Status (TAS), Total Oxidant Status (TOS), and Oxidative Stress Index (OSI).Results: Histopathological analysis demonstrated a significant reduction in muscle atrophy, degeneration, leukocyte infiltration, and fiber fragmentation in the IR+M8 group compared to the IR group. Biochemical assessments showed that TAS levels were considerably elevated, whereas TOS and OSI levels were markedly reduced in the metformin-treated groups, with the most prominent effects observed at the higher dosage of 8 mg/kg.Conclusion: The findings indicate that metformin exerts a dose-dependent protective effect against skeletal muscle injury resulting from lower extremity ischemia-reperfusion in rats. These protective properties are likely due to metformin’s antioxidant and anti-inflammatory mechanisms, highlighting its potential therapeutic value in mitigating IR-induced tissue damage.Article Protective Role of Bromelain’s Antioxidant and Anti-Inflammatory Effects in Experimental Lower Limb Ischemia-Reperfusion Injury(Nature Portfolio, 2025) Sezen, Saban Cem; Demirtas, Huseyin; Yildirim, Alperen Kutay; Ozer, Abdullah; Dursun, Ali Dogan; Kucuk, Aysegul; Arslan, MustafaIschemia-reperfusion (IR) injury is a multifaceted pathological process characterized by excessive oxidative stress and inflammatory responses upon restoration of blood flow. Bromelain, a proteolytic enzyme complex derived from pineapple, exhibits robust antioxidant and anti-inflammatory activities. This study aimed to evaluate the protective effects and underlying mechanisms of bromelain on oxidative stress and inflammation in an experimental rat model of lower limb ischemia-reperfusion injury. Twenty-four male Wistar Albino rats were randomly allocated into four groups: Sham-operated control (SHAM), Bromelain-only (BR), Ischemia-Reperfusion (IR), and Ischemia-Reperfusion with Bromelain treatment (IR + BR). Bromelain (40 mg/kg) was administered intraperitoneally before ischemia induction. The IR model involved 45 min of infrarenal abdominal aorta occlusion followed by 120 min of reperfusion. Oxidative biomarkers (total antioxidant status [TAS], total oxidant status [TOS], oxidative stress index [OSI]) and histopathological parameters (muscle atrophy, degeneration, leukocyte infiltration, internalization of nuclei, fragmentation, and hyalinization) were analyzed. Significant increases in muscle degeneration, leukocyte infiltration, nuclear internalization, fragmentation, and elevated oxidative stress biomarkers (increased TOS and OSI, decreased TAS) were observed in the IR group compared to controls. Bromelain treatment (IR + BR) significantly ameliorated these effects, reducing muscle tissue damage, inflammation, and oxidative imbalance compared to the untreated IR group. Bromelain effectively mitigates lower limb ischemia-reperfusion injury by reducing oxidative stress, restoring antioxidant capacity, and suppressing inflammatory responses. These protective effects suggest that bromelain holds potential as a therapeutic agent for managing oxidative and inflammatory damages associated with IR conditions, warranting further clinical investigation.

