Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 8
    Effect of Austenitizing Temperatures on the Microstructure and Mechanical Properties of Aisi 9254 Steel
    (Walter de Gruyter Gmbh, 2021) Murathan, Omer Faruk; Davut, Kemal; Kilicli, Volkan
    In this study, the effect of austenitizing temperatures and low-temperature isothermal heat treatment (below martensite start temperature) on the microstructure and mechanical properties of AISI 9254 high silicon spring steel has been investigated. Experimental studies show that ultra-fine carbide-free bainite, tempered martensite and carbon enriched retained austenite could be observed in isothermally heat-treated samples where the as-received sample consisted of fine pearlite. A high tensile strength of similar to 2060 MPa, a total elongation of similar to 8 %, and absorbed energy of 105 J were achieved in a commercial high-Si steel by austempering below the Ms temperature. A good combination of strength and ductility has been obtained in prolonged austempering below the martensite start temperature (225 degrees C) from an austenitizing temperature of 870 degrees C.
  • Article
    Citation - WoS: 123
    Citation - Scopus: 135
    Wire arc additive manufacturing of high-strength low alloy steels: study of process parameters and their influence on the bead geometry and mechanical characteristics
    (Springer London Ltd, 2020) Yildiz, Ahmet Suat; Davut, Kemal; Koc, Baris; Yilmaz, Oguzhan
    Additive manufacturing (AM) is becoming increasingly popular since it offers flexibility to produce complex designs with less tooling and minimum material at shorter lead times. Wire arc additive manufacturing (WAAM) is a variant of additive manufacturing which allows economical production of large-scale and high-density parts. The WAAM process has been studied extensively on different steels; however, the influence of process parameters, specifically wire feed speed (WFS), travel speed (TS), and their ratio on bead geometry, microstructure, and mechanical properties, are yet to be studied. The present work aims at closing this gap by using the WAAM process with robotic cold metal transfer (CMT) technology to manufacture high-strength structural steel parts. For that purpose, single-bead welds were produced from HSLA steel by varying WFS between 5 and 10 m/min and the WFS to TS ratio between 10 and 20. Those variations produce heat inputs in the range of 266-619 J/mm. The results have shown that the wire feed speed to travel speed ratio is the major parameter to control the heat input. Increasing heat input increases characteristic bead dimension, whereas it reduces the hardness. In the second part of experiments, two single-bead walls were deposited via the parallel deposition strategy and one multiple-bead wall was produced using the oscillation strategy. The tensile properties were tested along two directions: parallel and perpendicular to deposition directions. For the yield strength and tensile strength, the difference between horizontally and vertically tested specimens was smaller than the standard deviations. On the other hand, the total and uniform elongation values exhibit up to 10% difference in the test direction, indicating anisotropy in ductility. Those tensile properties were attributed to repeated thermal cycles during the WAMM process, which can cause heat transfer in multiple directions. The yield strength of the multiple-bead wall produced via oscillation was lower, whereas its ductility was higher. The tensile properties and hardness differences were found to correlate well with the microstructure.
  • Article
    Microstructure-Based Prediction of Mechanical Properties of Austempered Ductile Iron Using Multiple Linear Regression Analysis
    (Springer Int Publ AG, 2025) Yalcin, M. Alp; Davut, Kemal
    Multiple linear regression analysis (MLRA) was used to predict the mechanical properties of austempered ductile iron (ADI) including yield and tensile strength, uniform elongation, hardening exponent, as well as fracture energy by building a model that uses characteristic features of microstructural constituents as input parameters. The complex multi-scale microstructure of ADI, which is composed of spherical graphite particles over 10 mu m diameter; and an ausferritic matrix with sub-micron sized features, makes it ideal for prediction of mechanical properties. For that purpose, low alloyed ductile iron samples austempered between 300 and 400 degrees C for 45-180 min were tensile tested, and also multi-scale microstructural characterization were carried out using optical microscope, SEM, and EBSD technique. Moreover, a sensitivity analysis was performed to determine which microstructural parameter(s) each mechanical property is most sensitive to. The results show that tensile and yield strength are most sensitive to size and morphology of matrix phases. Moreover, the size and aspect ratio of acicular ferrite correlate well with those of high-carbon austenite; since both form during transformation of parent austenite into ausferrite during austempering treatment. Equiaxed parent austenite grains transform into ausferrite with acicular morphology during the austempering treatment; and presence of equiaxed austenite grains in the austempered samples indicates untransformed regions during austempering treatment. Ductility was found to be more sensitive to nodularity of graphite particles, and this sensitivity was attributed to the size difference between graphite particles and grain size of matrix phases.
  • Article
    Citation - WoS: 20
    Citation - Scopus: 22
    Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte
    (Mdpi, 2021) Ornek, Cem; Davut, Kemal; Kocabas, Mustafa; Bayatli, Aleyna; Urgen, Mustafa
    The corrosion morphology in grade 2205 duplex stainless steel wire was studied to understand the nature of pitting and the causes of the ferrite phase's selective corrosion in acidic (pH 3) NaCl solutions at 60 degrees C. It is shown that the corrosion mechanism is always pitting, which either manifests lacy cover perforation or densely arrayed selective cavities developing selectively on the ferrite phase. Pits with a lacy metal cover form in concentrated chloride solutions, whereas the ferrite phase's selective corrosion develops in diluted electrolytes, showing dependency on the chloride-ion concentration. The pit perforation is probabilistic and occurs on both austenite and ferrite grains. The lacy metal covers collapse in concentrated solutions but remain intact in diluted electrolytes. The collapse of the lacy metal cover happens due to hydrogen embrittlement. Pit evolution is deterministic and occurs selectively in the ferrite phase in light chloride solutions.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Nondestructive Microstructural Characterization of Austempered Ductile Iron
    (Walter de Gruyter Gmbh, 2023) Tuzun, Mert Yagiz; Yalcin, Mustafa Alp; Davut, Kemal; Kilicli, Volkan
    Austempered ductile iron (ADI) has been preferred in a wide range of applications due its unique combination of high strength, good ductility, wear resistance and fracture toughness together with lower cost and lower density compared to steels. Magnetic Barkhausen noise (MBN) measurement offers a better alternative to traditional characterization techniques by being fast and non-destructive. A simple linear regression using only one single independent variable cannot correlate the MBN with the microstructure of ADI, since its microstructure is multi component. Multiple linear regression analysis (MLRA) was used to build a model that uses the characteristic features of microstructural constituents as input parameters to predict the MBN. For that purpose, Cu-Ni-Mo alloyed ductile iron samples austempered between 325 and 400 degrees C and for 45-180 min duration were used. The results show that MBN is most sensitive to the size and shape of acicular ferrite and retained austenite. Moreover, MBN is almost insensitive to the size, morphology and volume fraction of graphite particles. This indicates that retained austenite pins the domain walls more effectively than the graphite particles. Considering the results MLRA, MBN technique can be used to characterize the ausferritic microstructure of ADI.