19 results
Search Results
Now showing 1 - 10 of 19
Article Citation - WoS: 103Citation - Scopus: 160Cassava Disease Recognition From Low-Quality Images Using Enhanced Data Augmentation Model and Deep Learning(Wiley, 2021) Abayomi-Alli, Olusola Oluwakemi; Damasevicius, Robertas; Misra, Sanjay; Maskeliunas, RytisImprovement of deep learning algorithms in smart agriculture is important to support the early detection of plant diseases, thereby improving crop yields. Data acquisition for machine learning applications is an expensive task due to the requirements of expert knowledge and professional equipment. The usability of any application in a real-world setting is often limited by unskilled users and the limitations of devices used for acquiring images for classification. We aim to improve the accuracy of deep learning models on low-quality test images using data augmentation techniques for neural network training. We generate synthetic images with a modified colour value distribution to expand the trainable image colour space and to train the neural network to recognize important colour-based features, which are less sensitive to the deficiencies of low-quality images such as those affected by blurring or motion. This paper introduces a novel image colour histogram transformation technique for generating synthetic images for data augmentation in image classification tasks. The approach is based on the convolution of the Chebyshev orthogonal functions with the probability distribution functions of image colour histograms. To validate our proposed model, we used four methods (resolution down-sampling, Gaussian blurring, motion blur, and overexposure) for reducing image quality from the Cassava leaf disease dataset. The results based on the modified MobileNetV2 neural network showed a statistically significant improvement of cassava leaf disease recognition accuracy on lower-quality testing images when compared with the baseline network. The model can be easily deployed for recognizing and detecting cassava leaf diseases in lower quality images, which is a major factor in practical data acquisition.Article Citation - WoS: 18Citation - Scopus: 35Distributed Centrality Analysis of Social Network Data Using Mapreduce(Mdpi, 2019) Behera, Ranjan Kumar; Rath, Santanu Kumar; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, RytisAnalyzing the structure of a social network helps in gaining insights into interactions and relationships among users while revealing the patterns of their online behavior. Network centrality is a metric of importance of a network node in a network, which allows revealing the structural patterns and morphology of networks. We propose a distributed computing approach for the calculation of network centrality value for each user using the MapReduce approach in the Hadoop platform, which allows faster and more efficient computation as compared to the conventional implementation. A distributed approach is scalable and helps in efficient computations of large-scale datasets, such as social network data. The proposed approach improves the calculation performance of degree centrality by 39.8%, closeness centrality by 40.7% and eigenvalue centrality by 41.1% using a Twitter dataset.Article Citation - WoS: 33Citation - Scopus: 51Optimizing Green Computing Awareness for Environmental Sustainability and Economic Security as a Stochastic Optimization Problem(Mdpi, 2017) Okewu, Emmanuel; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas; Fernandez-Sanz, LuisThe role of automation in sustainable development is not in doubt. Computerization in particular has permeated every facet of human endeavour, enhancing the provision of information for decision-making that reduces cost of operation, promotes productivity and socioeconomic prosperity and cohesion. Hence, a new field called information and communication technology for development (ICT4D) has emerged. Nonetheless, the need to ensure environmentally friendly computing has led to this research study with particular focus on green computing in Africa. This is against the backdrop that the continent is feared to suffer most from the vulnerability of climate change and the impact of environmental risk. Using Nigeria as a test case, this paper gauges the green computing awareness level of Africans via sample survey. It also attempts to institutionalize green computing maturity model with a view to optimizing the level of citizens awareness amid inherent uncertainties like low bandwidth, poor network and erratic power in an emerging African market. Consequently, we classified the problem as a stochastic optimization problem and applied metaheuristic search algorithm to determine the best sensitization strategy. Although there are alternative ways of promoting green computing education, the metaheuristic search we conducted indicated that an online real-time solution that not only drives but preserves timely conversations on electronic waste (e-waste) management and energy saving techniques among the citizenry is cutting edge. The authors therefore reviewed literature, gathered requirements, modelled the proposed solution using Universal Modelling Language (UML) and developed a prototype. The proposed solution is a web-based multi-tier e-Green computing system that educates computer users on innovative techniques of managing computers and accessories in an environmentally friendly way. We found out that such a real-time web-based interactive forum does not only stimulate the interest of the common man in environment-related issues, but also raises awareness about the impact his computer-related activities have on mother earth. This way, he willingly becomes part of the solution to environment degradation in his circle of influence.Article Citation - WoS: 113Citation - Scopus: 163Relationship Between Convenience, Perceived Value, and Repurchase Intention in Online Shopping in Vietnam(Mdpi, 2018) Quoc Trung Pham; Xuan Phuc Tran; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, RobertasElectronic commerce (e-commerce) is an increasingly popular trend in modern economy concomitant with the development of the Internet. E-commerce has developed considerably, making Vietnam one of the fastest growing markets in the world. However, its growth rate has not matched its potential, leading to the question how online retailers could improve their practices and thus contribute to the sustainable development of emerging markets such as Vietnam. Therefore, with the goal of providing online retailers with many methods to improve their online shopping service, this study examined the direct and indirect influence of the dimensions of online shopping convenience on repurchase intention through customer-perceived value. A survey of 230 Vietnamese customers was conducted to test the theoretical model. A structural equation model was used for data analysis. The results determined that the five dimensions of online shopping convenience are: access, search, evaluation, transaction, and possession/post-purchase convenience. All dimensions have a direct impact on perceived value and repurchase intention. The results also show the important role of perceived value when a factor both directly influences repurchase intention and mediates the relationship between convenience and repurchase intention.Article Citation - WoS: 47Citation - Scopus: 66Deep Learning Based Fall Detection Using Smartwatches for Healthcare Applications(Elsevier Sci Ltd, 2022) Sengul, Gokhan; Karakaya, Murat; Misra, Sanjay; Abayomi-Alli, Olusola O.; Damasevicius, RobertasWe implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activityout cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved.Article Citation - WoS: 24Citation - Scopus: 39Network Intrusion Detection With a Hashing Based Apriori Algorithm Using Hadoop Mapreduce(Mdpi, 2019) Azeez, Nureni Ayofe; Ayemobola, Tolulope Jide; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, RobertasUbiquitous nature of Internet services across the globe has undoubtedly expanded the strategies and operational mode being used by cybercriminals to perpetrate their unlawful activities through intrusion on various networks. Network intrusion has led to many global financial loses and privacy problems for Internet users across the globe. In order to safeguard the network and to prevent Internet users from being the regular victims of cyber-criminal activities, new solutions are needed. This research proposes solution for intrusion detection by using the improved hashing-based Apriori algorithm implemented on Hadoop MapReduce framework; capable of using association rules in mining algorithm for identifying and detecting network intrusions. We used the KDD dataset to evaluate the effectiveness and reliability of the solution. Our results obtained show that this approach provides a reliable and effective means of detecting network intrusion.Article Citation - WoS: 36Citation - Scopus: 58A Suite of Object Oriented Cognitive Complexity Metrics(Ieee-inst Electrical Electronics Engineers inc, 2018) Misra, Sanjay; Adewumi, Adewole; Fernandez-Sanz, Luis; Damasevicius, RobertasObject orientation has gained a wide adoption in the software development community. To this end, different metrics that can be utilized in measuring and improving the quality of object-oriented (OO) software have been proposed, by providing insight into the maintainability and reliability of the system. Some of these software metrics are based on cognitive weight and are referred to as cognitive complexity metrics. It is our objective in this paper to present a suite of cognitive complexity metrics that can be used to evaluate OO software projects. The present suite of metrics includes method complexity, message complexity, attribute complexity, weighted class complexity, and code complexity. The metrics suite was evaluated theoretically using measurement theory and Weyuker's properties, practically using Kaner's framework and empirically using thirty projects.Article Citation - WoS: 18Citation - Scopus: 24Fusion of Smartphone Sensor Data for Classification of Daily User Activities(Springer, 2021) Sengul, Gokhan; Ozcelik, Erol; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, RytisNew mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN.Article Citation - WoS: 23Citation - Scopus: 26Reconstruction of 3d Object Shape Using Hybrid Modular Neural Network Architecture Trained on 3d Models From Shapenetcore Dataset(Mdpi, 2019) Kulikajevas, Audrius; Maskeliunas, Rytis; Damasevicius, Robertas; Misra, SanjayDepth-based reconstruction of three-dimensional (3D) shape of objects is one of core problems in computer vision with a lot of commercial applications. However, the 3D scanning for point cloud-based video streaming is expensive and is generally unattainable to an average user due to required setup of multiple depth sensors. We propose a novel hybrid modular artificial neural network (ANN) architecture, which can reconstruct smooth polygonal meshes from a single depth frame, using a priori knowledge. The architecture of neural network consists of separate nodes for recognition of object type and reconstruction thus allowing for easy retraining and extension for new object types. We performed recognition of nine real-world objects using the neural network trained on the ShapeNetCore model dataset. The results evaluated quantitatively using the Intersection-over-Union (IoU), Completeness, Correctness and Quality metrics, and qualitative evaluation by visual inspection demonstrate the robustness of the proposed architecture with respect to different viewing angles and illumination conditions.Article Citation - WoS: 62Citation - Scopus: 78Hybrid Microgrid for Microfinance Institutions in Rural Areas - a Field Demonstration in West Africa(Elsevier, 2019) Ayodele, Esan; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, RytisWe present a hybrid energy microgrid optimization model for a microbank in a remote rural residential area. The model is based on the use of renewable (wind turbines & solar photovoltaic (PV)) and conventional (gasoline generators) energy sources and battery storage systems. We conducted a detailed assessment of a typical microbank's load, residential loads and energy resources in a village called Ajasse-Ipo in Kwara State, Nigeria. We performed the modeling of a hybrid microgrid system, followed by an economic analysis and sensitivity analysis to optimize the hybrid system design. We performed simulations based on the energy resources available (solar PV, wind, gasoline generator & battery energy storage system) to satisfy the energy demands of the microbank, while the excess energy was supplied to meet the demand of the community loads, i.e. water pumping machine and rural home lighting. The results obtained showed that the hybrid system comprising the solar PV/battery/diesel was most techno-economically viable with a Net Present Cost (NPC) and Cost of Energy (COE) of $468,914 and 0.667$/kWh, respectively. Comparing these results with those obtained using analytical methods, the solar PV, battery and converter sizes obtained were slightly higher than the optimal system configurations as produced by HOMER. The proposed hybrid energy system also allowed to achieve almost 50% reductions in CO2, CO, unburned hydrocarbons, particulate matter, SO2 & NO2. The system can be applicable for other rural regions in the developing countries with similar environmental conditions.

