3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 103Citation - Scopus: 160Cassava Disease Recognition From Low-Quality Images Using Enhanced Data Augmentation Model and Deep Learning(Wiley, 2021) Abayomi-Alli, Olusola Oluwakemi; Damasevicius, Robertas; Misra, Sanjay; Maskeliunas, RytisImprovement of deep learning algorithms in smart agriculture is important to support the early detection of plant diseases, thereby improving crop yields. Data acquisition for machine learning applications is an expensive task due to the requirements of expert knowledge and professional equipment. The usability of any application in a real-world setting is often limited by unskilled users and the limitations of devices used for acquiring images for classification. We aim to improve the accuracy of deep learning models on low-quality test images using data augmentation techniques for neural network training. We generate synthetic images with a modified colour value distribution to expand the trainable image colour space and to train the neural network to recognize important colour-based features, which are less sensitive to the deficiencies of low-quality images such as those affected by blurring or motion. This paper introduces a novel image colour histogram transformation technique for generating synthetic images for data augmentation in image classification tasks. The approach is based on the convolution of the Chebyshev orthogonal functions with the probability distribution functions of image colour histograms. To validate our proposed model, we used four methods (resolution down-sampling, Gaussian blurring, motion blur, and overexposure) for reducing image quality from the Cassava leaf disease dataset. The results based on the modified MobileNetV2 neural network showed a statistically significant improvement of cassava leaf disease recognition accuracy on lower-quality testing images when compared with the baseline network. The model can be easily deployed for recognizing and detecting cassava leaf diseases in lower quality images, which is a major factor in practical data acquisition.Article Citation - WoS: 55Citation - Scopus: 105Windows Pe Malware Detection Using Ensemble Learning(Mdpi, 2021) Azeez, Nureni Ayofe; Odufuwa, Oluwanifise Ebunoluwa; Misra, Sanjay; Oluranti, Jonathan; Damasevicius, RobertasIn this Internet age, there are increasingly many threats to the security and safety of users daily. One of such threats is malicious software otherwise known as malware (ransomware, Trojans, viruses, etc.). The effect of this threat can lead to loss or malicious replacement of important information (such as bank account details, etc.). Malware creators have been able to bypass traditional methods of malware detection, which can be time-consuming and unreliable for unknown malware. This motivates the need for intelligent ways to detect malware, especially new malware which have not been evaluated or studied before. Machine learning provides an intelligent way to detect malware and comprises two stages: feature extraction and classification. This study suggests an ensemble learning-based method for malware detection. The base stage classification is done by a stacked ensemble of fully-connected and one-dimensional convolutional neural networks (CNNs), whereas the end-stage classification is done by a machine learning algorithm. For a meta-learner, we analyzed and compared 15 machine learning classifiers. For comparison, five machine learning algorithms were used: naive Bayes, decision tree, random forest, gradient boosting, and AdaBoosting. The results of experiments made on the Windows Portable Executable (PE) malware dataset are presented. The best results were obtained by an ensemble of seven neural networks and the ExtraTrees classifier as a final-stage classifier.Article Citation - WoS: 20Citation - Scopus: 30Few-Shot Learning With a Novel Voronoi Tessellation-Based Image Augmentation Method for Facial Palsy Detection(Mdpi, 2021) Abayomi-Alli, Olusola Oluwakemi; Damasevicius, Robertas; Maskeliunas, Rytis; Misra, SanjayFace palsy has adverse effects on the appearance of a person and has negative social and functional consequences on the patient. Deep learning methods can improve face palsy detection rate, but their efficiency is limited by insufficient data, class imbalance, and high misclassification rate. To alleviate the lack of data and improve the performance of deep learning models for palsy face detection, data augmentation methods can be used. In this paper, we propose a novel Voronoi decomposition-based random region erasing (VDRRE) image augmentation method consisting of partitioning images into randomly defined Voronoi cells as an alternative to rectangular based random erasing method. The proposed method augments the image dataset with new images, which are used to train the deep neural network. We achieved an accuracy of 99.34% using two-shot learning with VDRRE augmentation on palsy faces from Youtube Face Palsy (YFP) dataset, while normal faces are taken from Caltech Face Database. Our model shows an improvement over state-of-the-art methods in the detection of facial palsy from a small dataset of face images.

