2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 62Citation - Scopus: 78Hybrid Microgrid for Microfinance Institutions in Rural Areas - a Field Demonstration in West Africa(Elsevier, 2019) Ayodele, Esan; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, RytisWe present a hybrid energy microgrid optimization model for a microbank in a remote rural residential area. The model is based on the use of renewable (wind turbines & solar photovoltaic (PV)) and conventional (gasoline generators) energy sources and battery storage systems. We conducted a detailed assessment of a typical microbank's load, residential loads and energy resources in a village called Ajasse-Ipo in Kwara State, Nigeria. We performed the modeling of a hybrid microgrid system, followed by an economic analysis and sensitivity analysis to optimize the hybrid system design. We performed simulations based on the energy resources available (solar PV, wind, gasoline generator & battery energy storage system) to satisfy the energy demands of the microbank, while the excess energy was supplied to meet the demand of the community loads, i.e. water pumping machine and rural home lighting. The results obtained showed that the hybrid system comprising the solar PV/battery/diesel was most techno-economically viable with a Net Present Cost (NPC) and Cost of Energy (COE) of $468,914 and 0.667$/kWh, respectively. Comparing these results with those obtained using analytical methods, the solar PV, battery and converter sizes obtained were slightly higher than the optimal system configurations as produced by HOMER. The proposed hybrid energy system also allowed to achieve almost 50% reductions in CO2, CO, unburned hydrocarbons, particulate matter, SO2 & NO2. The system can be applicable for other rural regions in the developing countries with similar environmental conditions.Article Citation - WoS: 11Citation - Scopus: 18Prospects of Ocean-Based Renewable Energy for West Africa's Sustainable Energy Future(Emerald Group Publishing Ltd, 2021) Adesanya, Ayokunle; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, RobertasPurpose The limited supply of fossil fuels, constant rise in the demand of energy and the importance of reducing greenhouse emissions have brought the adoption of renewable energy sources for generation of electrical power. One of these sources that has the potential to supply the world's energy needs is the ocean. Currently, ocean in West African region is mostly utilized for the extraction of oil and gas from the continental shelf. However, this resource is depleting, and the adaptation of ocean energy could be of major importance. The purpose of this paper is to discuss the possibilities of ocean-based renewable energy (OBRE) and analyze the economic impact of adapting an ocean energy using a thermal gradient (OTEC) approach for energy generation. Design/methodology/approach The analysis is conducted from the perspective of cost, energy security and environmental protection. Findings This study shows that adapting ocean energy in the West Africa region can significantly produce the energy needed to match the rising energy demands for sustainable development of Nigeria. Although the transition toward using OBRE will incur high capital cost at the initial stage, eventually, it will lead to a cost-effective generation, transmission, environmental improvement and stable energy supply to match demand when compared with the conventional mode of generation in West Africa. Originality/value The study will contribute toward analysis of the opportunities for adopting renewable energy sources and increasing energy sustainability for the West Africa coast regions.

