Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 18
    Citation - Scopus: 35
    Distributed Centrality Analysis of Social Network Data Using Mapreduce
    (Mdpi, 2019) Behera, Ranjan Kumar; Rath, Santanu Kumar; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis
    Analyzing the structure of a social network helps in gaining insights into interactions and relationships among users while revealing the patterns of their online behavior. Network centrality is a metric of importance of a network node in a network, which allows revealing the structural patterns and morphology of networks. We propose a distributed computing approach for the calculation of network centrality value for each user using the MapReduce approach in the Hadoop platform, which allows faster and more efficient computation as compared to the conventional implementation. A distributed approach is scalable and helps in efficient computations of large-scale datasets, such as social network data. The proposed approach improves the calculation performance of degree centrality by 39.8%, closeness centrality by 40.7% and eigenvalue centrality by 41.1% using a Twitter dataset.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 39
    Network Intrusion Detection With a Hashing Based Apriori Algorithm Using Hadoop Mapreduce
    (Mdpi, 2019) Azeez, Nureni Ayofe; Ayemobola, Tolulope Jide; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas
    Ubiquitous nature of Internet services across the globe has undoubtedly expanded the strategies and operational mode being used by cybercriminals to perpetrate their unlawful activities through intrusion on various networks. Network intrusion has led to many global financial loses and privacy problems for Internet users across the globe. In order to safeguard the network and to prevent Internet users from being the regular victims of cyber-criminal activities, new solutions are needed. This research proposes solution for intrusion detection by using the improved hashing-based Apriori algorithm implemented on Hadoop MapReduce framework; capable of using association rules in mining algorithm for identifying and detecting network intrusions. We used the KDD dataset to evaluate the effectiveness and reliability of the solution. Our results obtained show that this approach provides a reliable and effective means of detecting network intrusion.