Search Results

Now showing 1 - 10 of 20
  • Article
    Citation - WoS: 18
    Citation - Scopus: 35
    Distributed Centrality Analysis of Social Network Data Using Mapreduce
    (Mdpi, 2019) Behera, Ranjan Kumar; Rath, Santanu Kumar; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis
    Analyzing the structure of a social network helps in gaining insights into interactions and relationships among users while revealing the patterns of their online behavior. Network centrality is a metric of importance of a network node in a network, which allows revealing the structural patterns and morphology of networks. We propose a distributed computing approach for the calculation of network centrality value for each user using the MapReduce approach in the Hadoop platform, which allows faster and more efficient computation as compared to the conventional implementation. A distributed approach is scalable and helps in efficient computations of large-scale datasets, such as social network data. The proposed approach improves the calculation performance of degree centrality by 39.8%, closeness centrality by 40.7% and eigenvalue centrality by 41.1% using a Twitter dataset.
  • Article
    Citation - WoS: 33
    Citation - Scopus: 51
    Optimizing Green Computing Awareness for Environmental Sustainability and Economic Security as a Stochastic Optimization Problem
    (Mdpi, 2017) Okewu, Emmanuel; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas; Fernandez-Sanz, Luis
    The role of automation in sustainable development is not in doubt. Computerization in particular has permeated every facet of human endeavour, enhancing the provision of information for decision-making that reduces cost of operation, promotes productivity and socioeconomic prosperity and cohesion. Hence, a new field called information and communication technology for development (ICT4D) has emerged. Nonetheless, the need to ensure environmentally friendly computing has led to this research study with particular focus on green computing in Africa. This is against the backdrop that the continent is feared to suffer most from the vulnerability of climate change and the impact of environmental risk. Using Nigeria as a test case, this paper gauges the green computing awareness level of Africans via sample survey. It also attempts to institutionalize green computing maturity model with a view to optimizing the level of citizens awareness amid inherent uncertainties like low bandwidth, poor network and erratic power in an emerging African market. Consequently, we classified the problem as a stochastic optimization problem and applied metaheuristic search algorithm to determine the best sensitization strategy. Although there are alternative ways of promoting green computing education, the metaheuristic search we conducted indicated that an online real-time solution that not only drives but preserves timely conversations on electronic waste (e-waste) management and energy saving techniques among the citizenry is cutting edge. The authors therefore reviewed literature, gathered requirements, modelled the proposed solution using Universal Modelling Language (UML) and developed a prototype. The proposed solution is a web-based multi-tier e-Green computing system that educates computer users on innovative techniques of managing computers and accessories in an environmentally friendly way. We found out that such a real-time web-based interactive forum does not only stimulate the interest of the common man in environment-related issues, but also raises awareness about the impact his computer-related activities have on mother earth. This way, he willingly becomes part of the solution to environment degradation in his circle of influence.
  • Article
    Citation - WoS: 113
    Citation - Scopus: 163
    Relationship Between Convenience, Perceived Value, and Repurchase Intention in Online Shopping in Vietnam
    (Mdpi, 2018) Quoc Trung Pham; Xuan Phuc Tran; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas
    Electronic commerce (e-commerce) is an increasingly popular trend in modern economy concomitant with the development of the Internet. E-commerce has developed considerably, making Vietnam one of the fastest growing markets in the world. However, its growth rate has not matched its potential, leading to the question how online retailers could improve their practices and thus contribute to the sustainable development of emerging markets such as Vietnam. Therefore, with the goal of providing online retailers with many methods to improve their online shopping service, this study examined the direct and indirect influence of the dimensions of online shopping convenience on repurchase intention through customer-perceived value. A survey of 230 Vietnamese customers was conducted to test the theoretical model. A structural equation model was used for data analysis. The results determined that the five dimensions of online shopping convenience are: access, search, evaluation, transaction, and possession/post-purchase convenience. All dimensions have a direct impact on perceived value and repurchase intention. The results also show the important role of perceived value when a factor both directly influences repurchase intention and mediates the relationship between convenience and repurchase intention.
  • Article
    Citation - WoS: 43
    Citation - Scopus: 80
    Text Messaging-Based Medical Diagnosis Using Natural Language Processing and Fuzzy Logic
    (Hindawi Ltd, 2020) Omoregbe, Nicholas A. I.; Ndaman, Israel O.; Misra, Sanjay; Abayomi-Alli, Olusola O.; Damasevicius, Robertas
    The use of natural language processing (NLP) methods and their application to developing conversational systems for health diagnosis increases patients' access to medical knowledge. In this study, a chatbot service was developed for the Covenant University Doctor (CUDoctor) telehealth system based on fuzzy logic rules and fuzzy inference. The service focuses on assessing the symptoms of tropical diseases in Nigeria. Telegram Bot Application Programming Interface (API) was used to create the interconnection between the chatbot and the system, while Twilio API was used for interconnectivity between the system and a short messaging service (SMS) subscriber. The service uses the knowledge base consisting of known facts on diseases and symptoms acquired from medical ontologies. A fuzzy support vector machine (SVM) is used to effectively predict the disease based on the symptoms inputted. The inputs of the users are recognized by NLP and are forwarded to the CUDoctor for decision support. Finally, a notification message displaying the end of the diagnosis process is sent to the user. The result is a medical diagnosis system which provides a personalized diagnosis utilizing self-input from users to effectively diagnose diseases. The usability of the developed system was evaluated using the system usability scale (SUS), yielding a mean SUS score of 80.4, which indicates the overall positive evaluation.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 39
    Network Intrusion Detection With a Hashing Based Apriori Algorithm Using Hadoop Mapreduce
    (Mdpi, 2019) Azeez, Nureni Ayofe; Ayemobola, Tolulope Jide; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas
    Ubiquitous nature of Internet services across the globe has undoubtedly expanded the strategies and operational mode being used by cybercriminals to perpetrate their unlawful activities through intrusion on various networks. Network intrusion has led to many global financial loses and privacy problems for Internet users across the globe. In order to safeguard the network and to prevent Internet users from being the regular victims of cyber-criminal activities, new solutions are needed. This research proposes solution for intrusion detection by using the improved hashing-based Apriori algorithm implemented on Hadoop MapReduce framework; capable of using association rules in mining algorithm for identifying and detecting network intrusions. We used the KDD dataset to evaluate the effectiveness and reliability of the solution. Our results obtained show that this approach provides a reliable and effective means of detecting network intrusion.
  • Article
    Citation - WoS: 36
    Citation - Scopus: 58
    A Suite of Object Oriented Cognitive Complexity Metrics
    (Ieee-inst Electrical Electronics Engineers inc, 2018) Misra, Sanjay; Adewumi, Adewole; Fernandez-Sanz, Luis; Damasevicius, Robertas
    Object orientation has gained a wide adoption in the software development community. To this end, different metrics that can be utilized in measuring and improving the quality of object-oriented (OO) software have been proposed, by providing insight into the maintainability and reliability of the system. Some of these software metrics are based on cognitive weight and are referred to as cognitive complexity metrics. It is our objective in this paper to present a suite of cognitive complexity metrics that can be used to evaluate OO software projects. The present suite of metrics includes method complexity, message complexity, attribute complexity, weighted class complexity, and code complexity. The metrics suite was evaluated theoretically using measurement theory and Weyuker's properties, practically using Kaner's framework and empirically using thirty projects.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 24
    Fusion of Smartphone Sensor Data for Classification of Daily User Activities
    (Springer, 2021) Sengul, Gokhan; Ozcelik, Erol; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis
    New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN.
  • Article
    Citation - WoS: 23
    Citation - Scopus: 26
    Reconstruction of 3d Object Shape Using Hybrid Modular Neural Network Architecture Trained on 3d Models From Shapenetcore Dataset
    (Mdpi, 2019) Kulikajevas, Audrius; Maskeliunas, Rytis; Damasevicius, Robertas; Misra, Sanjay
    Depth-based reconstruction of three-dimensional (3D) shape of objects is one of core problems in computer vision with a lot of commercial applications. However, the 3D scanning for point cloud-based video streaming is expensive and is generally unattainable to an average user due to required setup of multiple depth sensors. We propose a novel hybrid modular artificial neural network (ANN) architecture, which can reconstruct smooth polygonal meshes from a single depth frame, using a priori knowledge. The architecture of neural network consists of separate nodes for recognition of object type and reconstruction thus allowing for easy retraining and extension for new object types. We performed recognition of nine real-world objects using the neural network trained on the ShapeNetCore model dataset. The results evaluated quantitatively using the Intersection-over-Union (IoU), Completeness, Correctness and Quality metrics, and qualitative evaluation by visual inspection demonstrate the robustness of the proposed architecture with respect to different viewing angles and illumination conditions.
  • Article
    Citation - WoS: 31
    Citation - Scopus: 36
    Large Scale Community Detection Using a Small World Model
    (Mdpi, 2017) Behera, Ranjan Kumar; Rath, Santanu Kumar; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis
    In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 9
    An Intelligent Advisory System To Support Managerial Decisions for a Social Safety Net
    (Mdpi, 2019) Okewu, Emmanuel; Misra, Sanjay; Okewu, Jonathan; Damasevicius, Robertas; Maskeliunas, Rytis
    Social investment programs are designed to provide opportunities to the less privileged so that they can contribute to the socioeconomic development of society. Stakeholders in social safety net programs (SSNPs) target vulnerable groups, such as the urban poor, women, the unemployed, and the elderly, with initiatives that have a transformative impact. Inadequate policy awareness remains a challenge, resulting in low participation rates in SSNPs. To achieve all-inclusive development, deliberate policies and programs that target this population have to be initiated by government, corporate bodies, and public-minded individuals. Artificial intelligence (AI) techniques could play an important role in improving the managerial decision support and policy-making process of SSNPs and increasing the social resilience of urban populations. To enhance managerial decision-making in social investment programs, we used a Bayesian network to develop an intelligent decision support system called the Social Safety Net Expert System (SSNES). Using the SSNES, we provide an advisory system to stakeholders who make management decisions, which clearly demonstrates the efficacy of SSNPs and inclusive development.