66 results
Search Results
Now showing 1 - 10 of 66
Article Citation - WoS: 11Citation - Scopus: 15A Study on the Performance Evaluation of Wavelet Decomposition in Transient-Based Radio Frequency Fingerprinting of Bluetooth Devices(Wiley, 2022) Almashaqbeh, Hemam; Dalveren, Yaser; Kara, AliRadio frequency fingerprinting (RFF) is used as a physical-layer security method to provide security in wireless networks. Basically, it exploits the distinctive features (fingerprints) extracted from the physical waveforms emitted from radio devices in the network. One of the major challenges in RFF is to create robust features forming the fingerprints of radio devices. Here, dual-tree complex wavelet transform (DT-CWT) provides an accurate way of extracting those robust features. However, its performance on the RFF of Bluetooth transients which fall into narrowband signaling has not been reported yet. Therefore, this study examines the performance of DT-CWT features on the use of transient-based RFF of Bluetooth devices. Initially, experimentally collected Bluetooth transients from different smartphones are decomposed by DT-CWT. Then, the characteristics and statistics of the wavelet domain signal are exploited to create robust features. Next, the support vector machine (SVM) is used to classify the smartphones. The classification accuracy is demonstrated by varying channel signal-to-noise ratio (SNR) and the size of transient duration. Results show that reasonable accuracy can be achieved (lower bound of 88%) even with short transient duration (1024 samples) at low SNRs (0-5 dB).Article Citation - WoS: 9Citation - Scopus: 12On the Performance of Energy Criterion Method in Wi-Fi Transient Signal Detection(Mdpi, 2022) Mohamed, Ismail; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, AliIn the development of radiofrequency fingerprinting (RFF), one of the major challenges is to extract subtle and robust features from transmitted signals of wireless devices to be used in accurate identification of possible threats to the wireless network. To overcome this challenge, the use of the transient region of the transmitted signals could be one of the best options. For an efficient transient-based RFF, it is also necessary to accurately and precisely estimate the transient region of the signal. Here, the most important difficulty can be attributed to the detection of the transient starting point. Thus, several methods have been developed to detect transient start in the literature. Among them, the energy criterion method based on the instantaneous amplitude characteristics (EC-a) was shown to be superior in a recent study. The study reported the performance of the EC- a method for a set of Wi-Fi signals captured from a particular Wi-Fi device brand. However, since the transient pattern varies according to the type of wireless device, the device diversity needs to be increased to achieve more reliable results. Therefore, this study is aimed at assessing the efficiency of the EC-a method across a large set ofWi-Fi signals captured from variousWi-Fi devices for the first time. To this end, Wi-Fi signals are first captured from smartphones of five brands, for a wide range of signalto-noise ratio (SNR) values defined as low (3 to 5 dB), medium (5 to 15 dB), and high (15 to 30 dB). Then, the performance of the EC-a method and well-known methods was comparatively assessed, and the efficiency of the EC-a method was verified in terms of detection accuracy.Article Citation - WoS: 9Multipath Exploitation in Emitter Localization for Irregular Terrains(Spolecnost Pro Radioelektronicke inzenyrstvi, 2019) Dalveren, Yaser; Kara, AliElectronic Support Measures (ESM) systems have many operational challenges while locating radar emitter's position around irregular terrains such as islands due to multipath scattering. To overcome these challenges, this paper addresses exploiting multipath scattering in passive localization of radar emitters around irregular terrains. The idea is based on the use of multipath scattered signals as virtual sensor through Geographical Information System (GIS). In this way, it is presented that single receiver (ESM receiver) passive localization can be achieved for radar emitters. The study is initiated with estimating candidate multipath scattering centers over irregular terrain. To do this, ESM receivers' Angle of Arrival (AOA) and Time of Arrival (TOA) information are required for directly received radar pulses along with multipath scattered pulses. The problem then turns out to be multiple-sensor localization problem for which Time Difference of Arrival (TDOA)-based techniques can easily be applied. However, there is high degree of uncertainty in location of candidate multipath scattering centers as the multipath scattering involves diffuse components over irregular terrain. Apparently, this causes large localization errors in TDOA. To reduce this error, a reliability based weighting method is proposed. Simulation results regarding with a simplified 3D model are also presented.Article Quality of Service Assessment: a Case Study on Performance Benchmarking of Cellular Network Operators in Turkey(2015) Kadıoğlu, Rana; Dalveren, Yaser; Kara, AliAbstract: This paper presents findings on performance benchmarking of cellular network operators in Turkey. Bench- marking is based on measurements of standard key performance indicators (KPIs) in one of the metropolitan cities of Turkey, Ankara. Performance benchmarking is formulated by incorporating customer perception by conducting surveys on how important KPIs are from the user s point of view. KPIs are measured, with standard test equipment, by drive test method on specified routes. According to the performance benchmarking results, the GSM and UMTS network operators achieving the best performance were determined in Ankara. Speech qualities of network operators, as the most popular service, were also evaluated by several statistical methods including pdf/cdf analysis and chi-square and Fisher s exact tests. The network operator providing the highest speech quality in Ankara was determined with the methods applied. Overall, the results and approaches on benchmarking of cellular networks in Turkey are reported for the first time in this paper. The approaches proposed in this paper could be adapted to wide-scale benchmarking of services in cellular networks.Master Thesis 77 Ghz Radar Sistemleri için Mikroşerit Anten Tasarımı ve Analizi(2023) Yılmaz, Selen; Dalveren, Yaser; Kara, AliBu tez, 77 GHz otomobil radarı için seri beslemeli mikroşerit yama dizi antenin tasarımı ve operasyonel davranışına yönelik kapsamlı araştırmasını takdim etmektedir. Öncelikli olarak, mikroşerit anten, yama dizi anten, frekans taramalı dizi anten ve Chebyshev dizi anten teorisi hakkında teorik altyapı bilgisi temin edilmiştir. Antenleri tasarlamak ve boyutlarını hassas bir şekilde ayarlamak için sonlu eleman metoduna dayalı tam dalga simülasyon aracı kullanılmıştır. İlk aşamada, 76.5 GHz rezonans frekansında çalışan seri beslemeli doğrusal Chebyshev dizi anten bir verici kanalını temsil etmesi üzerine tasarlanmıştır. Kazancı geliştirmek için toprak-sinyal-toprak geçiş yapısında kullanılmak üzere kısa devre pinlerinden yararlanılmıştır. Pinsiz ve pinli tasarımların bant genişliği ve kazanç bakımından karşılaştırmalı analizi yapılmıştır. Son aşamada, 76.5 GHz doğrusal dizi yama anten 79 GHz doğrusal dizi yama antene GSG geçiş yapısı boyutları optimize edilerek ve her bitişik iki yama elemanı arasındaki aralıklandırma ve yama elemanı uzunlukları ölçeklenerek dönüştürülmüştür. Ölçeklendirme yönteminin etkisini değerlendirebilmek adına bu aşamada iki tasarım sunulmuştur. Bu iki dizi yama anten tasarımının operasyonel özelliklerinin ana kulak yönlendirilme açısı, empedans bant genişliği, total kazanç ve yan kulak baskılanması bakımından karşılaştırmalı analizi yapılmıştır.Article Citation - WoS: 5Citation - Scopus: 10Quality of Service Assessment: a Case Study on Performance Benchmarking of Cellular Network Operators in Turkey(Tubitak Scientific & Technological Research Council Turkey, 2015) Kadioglu, Rana; Dalveren, Yaser; Dalveren, Yaser; Kara, Ali; Kara, Ali; Dalveren, Yaser; Kara, Ali; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringThis paper presents findings on performance benchmarking of cellular network operators in Turkey. Benchmarking is based on measurements of standard key performance indicators (KPIs) in one of the metropolitan cities of Turkey, Ankara. Performance benchmarking is formulated by incorporating customer perception by conducting surveys on how important KPIs are from the user's point of view. KPIs are measured, with standard test equipment, by drive test method on specified routes. According to the performance benchmarking results, the GSM and UMTS network operators achieving the best performance were determined in Ankara. Speech qualities of network operators, as the most popular service, were also evaluated by several statistical methods including pdf/cdf analysis and chi-square and Fisher's exact tests. The network operator providing the highest speech quality in Ankara was determined with the methods applied. Overall, the results and approaches on benchmarking of cellular networks in Turkey are reported for the first time in this paper. The approaches proposed in this paper could be adapted to wide-scale benchmarking of services in cellular networks.Conference Object Citation - Scopus: 1Development of a Digital Communications Course Enriched by Virtual and Remote Laboratory Tools(2011) Kara,A.; Kara, Ali; Cagiltay,N.; Çağıltay, Nergiz; Dalveren,Y.; Dalveren, Yaser; Kara, Ali; Çağıltay, Nergiz; Dalveren, Yaser; Department of Electrical & Electronics Engineering; Software Engineering; Department of Electrical & Electronics Engineering; Software EngineeringDigital communications is a basic concept for rapidly growing fields of Electrical, Computer and Electronics Engineering like wireless and mobile communication systems, radar and electronic warfare, telemetry and many signal processing techniques. A re-designed digital communications course with ICT (Information and Communication Technologies) based diverse tools including matlab assignments, remote experiments and interactive simulators is described in this study. First, the objectives of the course, learning outcomes and evaluation methods are described. The re-designed course is offered in the last semester at Atilim University, and performance increase in students is compared with the previous year's offering, and by evaluating the course on a topic-based approach. © 2011 IEEE.Article Citation - WoS: 14Citation - Scopus: 26Deep Learning-Based Vehicle Classification for Low Quality Images(Mdpi, 2022) Tas, Sumeyra; Sari, Ozgen; Dalveren, Yaser; Pazar, Senol; Kara, Ali; Derawi, MohammadThis study proposes a simple convolutional neural network (CNN)-based model for vehicle classification in low resolution surveillance images collected by a standard security camera installed distant from a traffic scene. In order to evaluate its effectiveness, the proposed model is tested on a new dataset containing tiny (100 x 100 pixels) and low resolution (96 dpi) vehicle images. The proposed model is then compared with well-known VGG16-based CNN models in terms of accuracy and complexity. Results indicate that although the well-known models provide higher accuracy, the proposed method offers an acceptable accuracy (92.9%) as well as a simple and lightweight solution for vehicle classification in low quality images. Thus, it is believed that this study might provide useful perception and understanding for further research on the use of standard low-cost cameras to enhance the ability of the intelligent systems such as intelligent transportation system applications.Doctoral Thesis Düşük Çözünürlüklü Görüntülerde Araç Tespiti ve Siniflandirmasi için Birden Fazla Aşamali Modüler Bir Yöntem(2025) Maiga, Bamoye; Dalveren, YaserAkıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.Doctoral Thesis Düşük Çözünürlüklü Görüntülerde Araç Tespiti ve Sınıflandırması İçin Birden Fazla Aşamalı Modüler Bir Yöntem(2025) Maıga, Bamoye; Dalveren, YaserAkıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.

