Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 11
    Citation - Scopus: 15
    A Study on the Performance Evaluation of Wavelet Decomposition in Transient-Based Radio Frequency Fingerprinting of Bluetooth Devices
    (Wiley, 2022) Almashaqbeh, Hemam; Dalveren, Yaser; Kara, Ali
    Radio frequency fingerprinting (RFF) is used as a physical-layer security method to provide security in wireless networks. Basically, it exploits the distinctive features (fingerprints) extracted from the physical waveforms emitted from radio devices in the network. One of the major challenges in RFF is to create robust features forming the fingerprints of radio devices. Here, dual-tree complex wavelet transform (DT-CWT) provides an accurate way of extracting those robust features. However, its performance on the RFF of Bluetooth transients which fall into narrowband signaling has not been reported yet. Therefore, this study examines the performance of DT-CWT features on the use of transient-based RFF of Bluetooth devices. Initially, experimentally collected Bluetooth transients from different smartphones are decomposed by DT-CWT. Then, the characteristics and statistics of the wavelet domain signal are exploited to create robust features. Next, the support vector machine (SVM) is used to classify the smartphones. The classification accuracy is demonstrated by varying channel signal-to-noise ratio (SNR) and the size of transient duration. Results show that reasonable accuracy can be achieved (lower bound of 88%) even with short transient duration (1024 samples) at low SNRs (0-5 dB).
  • Article
    Citation - WoS: 8
    Citation - Scopus: 15
    Distributed denial-of-service attack mitigation in network functions virtualization-based 5G networks using management and orchestration
    (Wiley, 2021) Koksal, Sarp; Dalveren, Yaser; Maiga, Bamoye; Kara, Ali
    The fifth generation (5G) technology is expected to allow connectivity to billions of devices, known as Internet of Things (IoT). However, IoT devices will inevitably be the main target of various cyberattack types. The most common one is known as distributed denial-of-service (DDoS) attack. In order to mitigate such attacks, network functions virtualization (NFV) has a great potential to provide the benefit of elasticity and low-cost solutions for protecting 5G networks. In this context, this study proposes a new mechanism developed to mitigate DDoS attacks in 5G NFV networks. The proposed mechanism utilizes intrusion prevention system's (IPS) virtual machines (VMs) to intercept the queries. Based on the volume of DDoS traffic, IPS's VMs are dynamically deployed by means of management and orchestration (MANO) in order to balance the load. To evaluate the effectiveness of the mechanism, experiments are conducted in a real 5G NFV environment built by using 5G NFV environment tools. To our best knowledge, this is the first time that NFV-based mechanism is experimentally tested in a real 5G NFV environment for mitigating DDoS attacks in 5G networks. The experimental results verify that the proposed mechanism can mitigate DDoS attacks effectively.
  • Article
    A Case Study on the Assessment of Rf Switch and Splitter Options for Coupling of Transceiver Modules To Bidirectional Antennas Employed in Linear Wireless Sensor Networks
    (Wiley, 2021) Dalveren, Yaser; Durukan, Ahmet Mert; Kara, Ali
    Recently, a concept of linear wireless sensor networks (LWSNs) has attracted much attention. For such networks, one of the key challenges in sensor node design is to couple transceiver modules with bidirectional antennas placed back-to-back for opposite radiation. As is known, simply, this can be achieved by using well-known coupling options like radio frequency (RF) switch or splitter. However, it is important to decide between two seemingly equally good options according to the system requirements such as RF performance, power consumption, and cost. Therefore, this study aims to comparatively assess these options from the system level point of view to find out what advantages or disadvantages either provides as per the other from widespread use of them in a LWSN-based cathodic protection monitoring of oil and natural gas pipelines in extreme environments. Preliminary field tests are also conducted to validate the efficiency of coupling options for LWSN links. Results show that RF splitter offers low power consumption and cost whereas RF switch has advantages of low loss. Thus, it is believed that this study may provide useful insights to design bidirectional sensor links for LWSNs.