Search Results

Now showing 1 - 10 of 63
  • Article
    Citation - WoS: 9
    Citation - Scopus: 12
    On the Performance of Energy Criterion Method in Wi-Fi Transient Signal Detection
    (Mdpi, 2022) Mohamed, Ismail; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, Ali
    In the development of radiofrequency fingerprinting (RFF), one of the major challenges is to extract subtle and robust features from transmitted signals of wireless devices to be used in accurate identification of possible threats to the wireless network. To overcome this challenge, the use of the transient region of the transmitted signals could be one of the best options. For an efficient transient-based RFF, it is also necessary to accurately and precisely estimate the transient region of the signal. Here, the most important difficulty can be attributed to the detection of the transient starting point. Thus, several methods have been developed to detect transient start in the literature. Among them, the energy criterion method based on the instantaneous amplitude characteristics (EC-a) was shown to be superior in a recent study. The study reported the performance of the EC- a method for a set of Wi-Fi signals captured from a particular Wi-Fi device brand. However, since the transient pattern varies according to the type of wireless device, the device diversity needs to be increased to achieve more reliable results. Therefore, this study is aimed at assessing the efficiency of the EC-a method across a large set ofWi-Fi signals captured from variousWi-Fi devices for the first time. To this end, Wi-Fi signals are first captured from smartphones of five brands, for a wide range of signalto-noise ratio (SNR) values defined as low (3 to 5 dB), medium (5 to 15 dB), and high (15 to 30 dB). Then, the performance of the EC-a method and well-known methods was comparatively assessed, and the efficiency of the EC-a method was verified in terms of detection accuracy.
  • Article
    Citation - WoS: 9
    Multipath Exploitation in Emitter Localization for Irregular Terrains
    (Spolecnost Pro Radioelektronicke inzenyrstvi, 2019) Dalveren, Yaser; Kara, Ali
    Electronic Support Measures (ESM) systems have many operational challenges while locating radar emitter's position around irregular terrains such as islands due to multipath scattering. To overcome these challenges, this paper addresses exploiting multipath scattering in passive localization of radar emitters around irregular terrains. The idea is based on the use of multipath scattered signals as virtual sensor through Geographical Information System (GIS). In this way, it is presented that single receiver (ESM receiver) passive localization can be achieved for radar emitters. The study is initiated with estimating candidate multipath scattering centers over irregular terrain. To do this, ESM receivers' Angle of Arrival (AOA) and Time of Arrival (TOA) information are required for directly received radar pulses along with multipath scattered pulses. The problem then turns out to be multiple-sensor localization problem for which Time Difference of Arrival (TDOA)-based techniques can easily be applied. However, there is high degree of uncertainty in location of candidate multipath scattering centers as the multipath scattering involves diffuse components over irregular terrain. Apparently, this causes large localization errors in TDOA. To reduce this error, a reliability based weighting method is proposed. Simulation results regarding with a simplified 3D model are also presented.
  • Doctoral Thesis
    Düşük Çözünürlülüklü Görüntülerde Araç Tespiti ve Sınıflandırması İçin Birden Fazla Aşamalı Modüller Bir Yöntem
    (2025) Maiga, Bamoye; Dalveren, Yaser
    Akıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.
  • Conference Object
    Citation - Scopus: 1
    Development of a Digital Communications Course Enriched by Virtual and Remote Laboratory Tools
    (2011) Kara,A.; Kara, Ali; Cagiltay,N.; Çağıltay, Nergiz; Dalveren,Y.; Dalveren, Yaser; Kara, Ali; Çağıltay, Nergiz; Dalveren, Yaser; Department of Electrical & Electronics Engineering; Software Engineering; Department of Electrical & Electronics Engineering; Software Engineering
    Digital communications is a basic concept for rapidly growing fields of Electrical, Computer and Electronics Engineering like wireless and mobile communication systems, radar and electronic warfare, telemetry and many signal processing techniques. A re-designed digital communications course with ICT (Information and Communication Technologies) based diverse tools including matlab assignments, remote experiments and interactive simulators is described in this study. First, the objectives of the course, learning outcomes and evaluation methods are described. The re-designed course is offered in the last semester at Atilim University, and performance increase in students is compared with the previous year's offering, and by evaluating the course on a topic-based approach. © 2011 IEEE.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 26
    Deep Learning-Based Vehicle Classification for Low Quality Images
    (Mdpi, 2022) Tas, Sumeyra; Sari, Ozgen; Dalveren, Yaser; Pazar, Senol; Kara, Ali; Derawi, Mohammad
    This study proposes a simple convolutional neural network (CNN)-based model for vehicle classification in low resolution surveillance images collected by a standard security camera installed distant from a traffic scene. In order to evaluate its effectiveness, the proposed model is tested on a new dataset containing tiny (100 x 100 pixels) and low resolution (96 dpi) vehicle images. The proposed model is then compared with well-known VGG16-based CNN models in terms of accuracy and complexity. Results indicate that although the well-known models provide higher accuracy, the proposed method offers an acceptable accuracy (92.9%) as well as a simple and lightweight solution for vehicle classification in low quality images. Thus, it is believed that this study might provide useful perception and understanding for further research on the use of standard low-cost cameras to enhance the ability of the intelligent systems such as intelligent transportation system applications.
  • Doctoral Thesis
    Düşük Çözünürlüklü Görüntülerde Araç Tespiti ve Siniflandirmasi için Birden Fazla Aşamali Modüler Bir Yöntem
    (2025) Maiga, Bamoye; Dalveren, Yaser
    Akıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.
  • Article
    From Street Canyons To Corridors: Adapting Urban Propagation Models for an Indoor IQRF Network
    (MDPI, 2025) Doyan, Talip Eren; Yalcinkaya, Bengisu; Dogan, Deren; Dalveren, Yaser; Derawi, Mohammad
    Among wireless communication technologies underlying Internet of Things (IoT)-based smart buildings, IQRF (Intelligent Connectivity Using Radio Frequency) technology is a promising candidate due to its low power consumption, cost-effectiveness, and wide coverage. However, effectively modeling the propagation characteristics of IQRF in complex indoor environments for simple and accurate network deployment remains challenging, as architectural elements like walls and corners cause substantial signal attenuation and unpredictable propagation behavior. This study investigates the applicability of a site-specific modeling approach, originally developed for urban street canyons, to characterize peer-to-peer (P2P) IQRF links operating at 868 MHz in typical indoor scenarios, including line-of-sight (LoS), one-turn, and two-turn non-line-of-sight (NLoS) configurations. The received signal powers are compared with well-known empirical models, including international telecommunication union radio communication sector (ITU-R) P.1238-9 and WINNER II, and ray-tracing simulations. The results show that while ITU-R P.1238-9 achieves lower prediction error under LoS conditions with a root mean square error (RMSE) of 5.694 dB, the site-specific approach achieves substantially higher accuracy in NLoS scenarios, maintaining RMSE values below 3.9 dB for one- and two-turn links. Furthermore, ray-tracing simulations exhibited notably larger deviations, with RMSE values ranging from 7.522 dB to 16.267 dB and lower correlation with measurements. These results demonstrate the potential of site-specific modeling to provide practical, computationally efficient, and accurate insights for IQRF network deployment planning in smart building environments.
  • Article
    Quality of Service Assessment: a Case Study on Performance Benchmarking of Cellular Network Operators in Turkey
    (2015) Kadıoğlu, Rana; Dalveren, Yaser; Kara, Ali
    Abstract: This paper presents findings on performance benchmarking of cellular network operators in Turkey. Bench- marking is based on measurements of standard key performance indicators (KPIs) in one of the metropolitan cities of Turkey, Ankara. Performance benchmarking is formulated by incorporating customer perception by conducting surveys on how important KPIs are from the user s point of view. KPIs are measured, with standard test equipment, by drive test method on specified routes. According to the performance benchmarking results, the GSM and UMTS network operators achieving the best performance were determined in Ankara. Speech qualities of network operators, as the most popular service, were also evaluated by several statistical methods including pdf/cdf analysis and chi-square and Fisher s exact tests. The network operator providing the highest speech quality in Ankara was determined with the methods applied. Overall, the results and approaches on benchmarking of cellular networks in Turkey are reported for the first time in this paper. The approaches proposed in this paper could be adapted to wide-scale benchmarking of services in cellular networks.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Modelling and Design of Pre-Equalizers for a Fully Operational Visible Light Communication System
    (Mdpi, 2023) Bostanoglu, Murat; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, Ali
    Nowadays, Visible Light Communication (VLC) has gained much attention due to the significant advancements in Light Emitting Diode (LED) technology. However, the bandwidth of LEDs is one of the important concerns that limits the transmission rates in a VLC system. In order to eliminate this limitation, various types of equalization methods are employed. Among these, using digital pre-equalizers can be a good choice because of their simple and reusable structure. Therefore, several digital pre-equalizer methods have been proposed for VLC systems in the literature. Yet, there is no study in the literature that examines the implementation of digital pre-equalizers in a realistic VLC system based on the IEEE 802.15.13 standard. Hence, the purpose of this study is to propose digital pre-equalizers for VLC systems based on the IEEE 802.15.13 standard. For this purpose, firstly, a realistic channel model is built by collecting the signal recordings from a real 802.15.13-compliant VLC system. Then, the channel model is integrated into a VLC system modeled in MATLAB. This is followed by the design of two different digital pre-equalizers. Next, simulations are conducted to evaluate their feasibility in terms of the system's BER performance under bandwidth-efficient modulation schemes, such as 64-QAM and 256-QAM. Results show that, although the second pre-equalizer provides lower BERs, its design and implementation might be costly. Nevertheless, the first design can be selected as a low-cost alternative to be used in the VLC system.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Propagation Measurements for Iqrf Network in an Urban Environment
    (Mdpi, 2022) Bouzidi, Mohammed; Dalveren, Yaser; Mohamed, Marshed; Dalveren, Yaser; Moldsvor, Arild; Cheikh, Faouzi Alaya; Derawi, Mohammad; Dalveren, Yaser; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    Recently, IQRF has emerged as a promising technology for the Internet of Things (IoT), owing to its ability to support short- and medium-range low-power communications. However, real world deployment of IQRF-based wireless sensor networks (WSNs) requires accurate path loss modelling to estimate network coverage and other performances. In the existing literature, extensive research on propagation modelling for IQRF network deployment in urban environments has not been provided yet. Therefore, this study proposes an empirical path loss model for the deployment of IQRF networks in a peer-to-peer configured system where the IQRF sensor nodes operate in the 868 MHz band. For this purpose, extensive measurement campaigns are conducted outdoor in an urban environment for Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) links. Furthermore, in order to evaluate the prediction accuracy of well-known empirical path loss models for urban environments, the measurements are compared with the predicted path loss values. The results show that the COST-231 Walfisch-Ikegami model has higher prediction accuracy and can be used for IQRF network planning in LoS links, while the COST-231 Hata model has better accuracy in NLoS links. On the other hand, the effects of antennas on the performance of IQRF transceivers (TRs) for LoS and NLoS links are also scrutinized. The use of IQRF TRs with a Straight-Line Dipole Antenna (SLDA) antenna is found to offer more stable results when compared to IQRF (TRs) with Meander Line Antenna (MLA) antenna. Therefore, it is believed that the findings presented in this article could offer useful insights for researchers interested in the development of IoT-based smart city applications.