2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 3Citation - Scopus: 4High Persistence and Nonlinear Behavior in Financial Variables: a More Powerful Unit Root Testing in the Estar Framework(Mdpi, 2021) Omay, Tolga; Corakci, Aysegul; Hasdemir, EsraIn this study, we consider the hybrid nonlinear features of the Exponential Smooth Transition Autoregressive-Fractional Fourier Function (ESTAR-FFF) form unit root test. As is well known, when developing a unit root test for the ESTAR model, linearization is performed by the Taylor approximation, and thereby the nuisance parameter problem is eliminated. Although this linearization process leads to a certain amount of information loss in the unit root testing equation, it also causes the resulting test to be more accessible and consistent. The method that we propose here contributes to the literature in three important ways. First, it reduces the information loss that arises due to the Taylor expansion. Second, the research to date has tended to misinterpret the Fourier function used with the Kapetanios, Shin and Snell (2003) (KSS) unit root test and considers it to capture multiple smooth transition structural breaks. The simulation studies that we carry out in this study clearly show that the Fourier function only restores the Taylor residuals of the ESTAR type function rather than accounting forthe smooth structural break. Third, the new nonlinear unit root test developed in this paper has very strong power in the highly persistent near unit root environment that the financial data exhibit. The application of the Kapetanios Shin Snell- Fractional Fourier (KSS-FF) test to ex-post real interest rates data of 11 OECD countries for country-specific sample periods shows that the new test catches nonlinear stationarity in many more countries than the KSS test itself.Article Citation - WoS: 1Citation - Scopus: 1A Unit Root Test With Markov Switching Deterministic Components: A Special Emphasis on Nonlinear Optimization Algorithms(Springer, 2023) Omay, Tolga; Corakci, AysegulIn this study, we investigate the performance of different optimization algorithms in estimating the Markov switching (MS) deterministic components of the traditional ADF test. For this purpose, we consider Broyden, Fletcher, Goldfarb, and Shanno (BFGS), Berndt, Hall, Hall, Hausman (BHHH), Simplex, Genetic, and Expectation-Maximization (EM) algorithms. The simulation studies show that the Simplex method has significant advantages over the other commonly used hill-climbing methods and EM. It gives unbiased estimates of the MS deterministic components of the ADF unit root test and delivers good size and power properties. When Hamilton's (Econometrica 57:357-384, 1989) MS model is re-evaluated in conjunction with the alternative algorithms, we furthermore show that Simplex converges to the global optima in stationary MS models with remarkably high precision and even when convergence criterion is raised, or initial values are altered. These advantages of the Simplex routine in MS models allow us to contribute to the current literature. First, we produce the exact critical values of the generalized ADF unit root test with MS breaks in trends. Second, we derive the asymptotic distribution of this test and provide its invariance feature.

