Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    From Narrow To Narrower: a Very Low Band Gap [1,2,5]thiadiazolo[3,4-G]quinoxaline Donor-Acceptor Type Electrochromic Polymer
    (Electrochemical Soc inc, 2017) Gokce, Gurcan; Karabay, Baris; Cihaner, Atilla; Ozkut, Merve Icli
    The development of low bandgap polymers (or zero bandgap polymers) is still one of the main goals of scientists and many viable paths have been formulated in order to accomplish this. In this study, a donor-acceptor-donor type electrochromic polymer based on [1,2,5]thiadiazolo[3,4-g]quinoxaline acceptor and selenophene donor units with extremely low bandgap (ranging from 0.21 to 0.60 eV depending on bandgap determination method) is synthesized and characterized electrochemically, optically and colorimetrically. Electrochemical and optical studies showed that the polymer film was susceptible to both n- and p-type doping and has a mustard color in its neutral state, and upon oxidation its color changed to brown, and upon reduction the color is light purple. (C) 2017 The Electrochemical Society. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Synthesis and Characterization of New Dithienosilole Based Copolymers
    (Electrochemical Soc inc, 2016) Karabay, Lutfiye Canan; Al-Jumaili, Mohammed; Cihaner, Atilla
    2-Ethylhexyl substituted dithienosilole based soluble polymers including thiophene (1) and bithiophene (2) units were synthesized via Stille coupling reaction. The presence of 2-ethylhexyl substituents on the silole ring gave solubility property to the polymers in common solvents. According to gel permeation chromatography measurements, the weight average molecular weights of the polymers 1 and 2 were found to be as 70,977 with a polydispersity index of 2.30 and 110,439 with a PDI of 1.42, respectively. Fluorescent polymers in toluene solution have maximum emisssion bands at 634 nm for the polymer 1 and 613 nm for the polymer 2. Chemical and electrochemical doping of the polymers in the solution and in the film forms were monitored by using ultraviolet-visible spectroscopic technique. The polymers exhibited chromic (chemochromic and electrochromic) properties. While the colors of the neutral polymer films are purple for the polymer 1 and reddish brown for the polymer 2, both polymers are transparent sky blue at their oxidized states. The bandgaps of polymers in film forms were calculated as 1.81 eV for the polymer 1 and 1.92 eV for the polymer 2. Also, electrochromic device applications of the polymers were done. Electrochemical and optical behaviors of the polymers demonstrated that they can be good candidates for optoelectronic applications. (C) 2016 The Electrochemical Society. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Silver Nanoparticles Added Polymer Film Prepared by Electrochemical Route for Surface Enhanced Raman Scattering Applications
    (Electrochemical Soc inc, 2019) Khadim, Raisan; Uzun, Ceren; Cihaner, Atilla; Kaya, Murat
    A simplemethod for the fabrication of stable and highly active surface enhanced Raman scattering (SERS) substrate by exploiting the optical properties of the silver nanoparticles (AgNPs) and organizational characteristics of the polymer is presented. Homogeneous distribution ofAgNPs is achieved with the usage of poly (4,7-di-2,3-dihydrothieno [3,4-b] [1,4] dioxin-5-yl-2,1,3 benzoselena diazole) (PESeE) film coated on the indium tin oxide glass (ITO) surface. The obtained structure ensured the emergence of a large number of hot spots where the localization of electromagnetic energy can result in enhancement of the Raman signal. The effect of the PESeE film thickness, the density of AgNPs added to the polymer film, and the concentration of silver ion solution on the morphology of the substrate and the enhancement of the SERS signal was revealed by using field emission scanning electron microscopy (FE-SEM) and SERS measurements. Enhancement power, homogeneity, and stability of the PESeE-AgNPs substrate were also investigated with measurement of the Raman probe. Spot-to-spot and batch-to-batch reproducibilities of the prepared substrate were calculated as 8.4%, and 10.2% (RSD %) respectively. Due to these properties, PESeE-AgNPs SERS substrate can be a good candidate for the detection and sensor application of various biological and chemical analytes. (C) 2019 The Electrochemical Society.