Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Assessment of Anticancer Effects of Aloe Vera on 3D Liver Tumor Spheroids in a Microfluidic Platform
    (Wiley, 2025) Tevlek, Atakan; Kibar, Gunes; Cetin, Barbaros
    The search for effective anticancer therapies has increasingly focused on natural compounds like Aloe vera, renowned for its therapeutic properties. This study investigates the anticancer properties of Aloe vera on 3D liver tumor spheroids via a PDMS-based microfluidic device, providing a more physiologically realistic model compared to traditional 2D cultures. HepG2 cells were cultivated to generate 3D spheroids on-chip, thereafter subjected to different concentrations of Aloe vera and the chemotherapeutic drug Doxorubicin to evaluate cytotoxic effects. The microfluidic system, validated by COMSOL simulations, facilitated continuous perfusion and real-time assessment of cell viability over a duration of 10 days. The results indicated that Aloe vera markedly diminished cell viability by triggering apoptosis at concentrations over 12.5 mg/mL. IC50 values were determined at 72 h: 25 +/- 0.10 mg/mL for Aloe vera and 5.47 +/- 0.03 mu g/mL for Doxorubicin in 2D cultures, but in 3D cultures, the IC50 values were 31.25 +/- 0.14 mg/mL for Aloe vera and 8.33 +/- 0.05 mu g/mL for Doxorubicin. This study underscores the promise of Aloe vera as a natural anticancer agent and illustrates the efficacy of microfluidic platforms for enhanced drug screening and customized medicine applications.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 28
    Modeling of Dielectrophoretic Particle Motion: Point Particle Versus Finite-Sized Particle
    (Wiley, 2017) Cetin, Barbaros; Oner, S. Dogan; Baranoglu, Besim
    Dielectrophoresis (DEP) is a very popular technique for microfluidic bio-particle manipulation. For the design of a DEP-based microfluidic device, simulation of the particle trajectory within the microchannel network is crucial. There are basically two approaches: (i) point-particle approach and (ii) finite-sized particle approach. In this study, many aspects of both approaches are discussed for the simulation of direct current DEP, alternating current DEP, and traveling-wave DEP applications. Point-particle approach is implemented using Lagrangian tracking method, and finite-sized particle is implemented using boundary element method. The comparison of the point-particle approach and finite-sized particle approach is presented for different DEP applications. Moreover, the effect of particle-particle interaction is explored by simulating the motion of closely packed multiple particles for the same applications, and anomalous-DEP, which is a result of particle-wall interaction at the close vicinity of electrode surface, is illustrated.