2 results
Search Results
Now showing 1 - 2 of 2
Review Citation - WoS: 26Citation - Scopus: 23Real-Time Biosensing Bacteria and Virus With Quartz Crystal Microbalance: Recent Advances, Opportunities, and Challenges(Taylor & Francis inc, 2023) Bonyadi, Farzaneh; Kavruk, Murat; Ucak, Samet; Cetin, Barbaros; Bayramoglu, Gulay; Dursun, Ali D. D.; Ozalp, Veli C. C.Continuous monitoring of pathogens finds applications in environmental, medical, and food industry settings. Quartz crystal microbalance (QCM) is one of the promising methods for real-time detection of bacteria and viruses. QCM is a technology that utilizes piezoelectric principles to measure mass and is commonly used in detecting the mass of chemicals adhering to a surface. Due to its high sensitivity and rapid detection times, QCM biosensors have attracted considerable attention as a potential method for detecting infections early and tracking the course of diseases, making it a promising tool for global public health professionals in the fight against infectious diseases. This review first provides an overview of the QCM biosensing method, including its principle of operation, various recognition elements used in biosensor creation, and its limitations and then summarizes notable examples of QCM biosensors for pathogens, focusing on microfluidic magnetic separation techniques as a promising tool in the pretreatment of samples. The review explores the use of QCM sensors in detecting pathogens in various samples, such as food, wastewater, and biological samples. The review also discusses the use of magnetic nanoparticles for sample preparation in QCM biosensors and their integration into microfluidic devices for automated detection of pathogens and highlights the importance of accurate and sensitive detection methods for early diagnosis of infections and the need for point-of-care approaches to simplify and reduce the cost of operation.Article Citation - WoS: 5Citation - Scopus: 5Performance Comparison of Aptamer- and Antibody-Based Biosensors for Bacteria Detection on Glass Surfaces(Taylor & Francis inc, 2024) Balci, Oguz; Kurekci, Asli; Ozalp, V. Cengiz; Cetin, BarbarosAntibodies are the most common ligands in commercial and research assay systems for detecting whole pathogen cells. On the other hand, aptamers are superior ligands with many advantages over antibodies in sensitive and robust assay development. Extensive comparisons between aptamer-based biosensors and immunosensors are limited to protein analytes. Here, we report a comparison of ligands (four antibodies and one aptamer for each bacteria) to be used as a biosensor for Escherichia coli and Staphylococcus aureus on glass surfaces through systematic experiments. We have demonstrated that anti-E. coli antibody and mouse monoclonal to S. aureus have the best performance among the compared ligands. Hence, the ligands with the best performance were further investigated within the scope of linear range, analytical sensitivity, and reproducibility of the results. We have demonstrated that anti-E. coli antibody with a capture efficiency of 89.1% and mouse monoclonal to S. aureus with a capture efficiency of 88.2% have the best performance among the compared ligands. The results suggest that antibody ligands function with higher efficiency than aptamer ligands but aptamers have strong potential as an analytical tool.

