Search Results

Now showing 1 - 2 of 2
  • Conference Object
    Citation - WoS: 4
    Citation - Scopus: 4
    A Material Perspective on Consequence of Deformation Heating During Stamping of Dp Steels
    (Iop Publishing Ltd, 2017) Simsir, C.; Cetin, B.; Efe, M.; Davut, K.; Bayramin, B.
    Recent studies showed that, during stamping of high strength steels at industrially relevant production rates, local temperature in the blank may rise up to 200 degrees C - 300 degrees C due to deformation heating. Moreover, die temperature may also rise up to 100 degrees C - 150 degrees C for progressive stamping dies. Based on the common assumption that the blank softens as the temperature increases, thermal softening creates a margin in Forming Limit Diagram (FLD) and therefore the FLD determined at room temperature can safely be used for those cases. In this article, the validity of this assumption on DP590 steel is questioned by high temperature tensile tests (RT - 300 degrees C) at various strain rates (10(-3) s(-1) - 1 s(-1)). The results indicated a decrease both in uniform and total elongation in 200 degrees C - 300 degrees C range together with several other symptoms of Dynamic Strain Aging (DSA) at all strain rates. Concurrent with the DSA, the simulated FLD confirms the lower formability at high temperature and strain rates. Thus, it is concluded FLD determined at RT may not be valid for the investigated steels.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Investigation of the Combined Effects of Ultrasonic Vibration-Assisted Machining and Minimum Quantity Lubrication on Al7075-T6
    (John Wiley and Sons Ltd, 2024) Namlu, R.H.; Cetin, B.; Lotfi, B.; Kiliç, S.E.
    The aluminum alloy Al7075-T6 finds extensive application in the aviation and automotive industries, where machining plays a pivotal role. Emerging techniques such as Ultrasonic Vibration-Assisted Machining (UVAM) and Minimum Quantity Lubrication (MQL) hold promise for enhancing machining efficiency. In this study, the combined use of UVAM and MQL for slot milling of Al7075-T6 was investigated. The results demonstrate that UVAM reduced cutting forces by an average of 10.87% in MQL and 8.31% in Conventional Cutting Fluid (CCF) conditions when compared to Conventional Machining (CM). In addition, UVAM yielded significantly improved surface finishes, characterized by an average reduction in surface roughness of 41.86% in MQL and 32.11% in CCF conditions relative to CM. Furthermore, surfaces subjected to UVAM exhibited fewer instances of burn marks and tool-induced markings, reduced chip splashing, and more uniform surface integrity compared to those manufactured with CM. Lastly, chips generated through UVAM exhibited distinct characteristics, notably shorter length, curvier shape, and a distinctive half-turn morphology when compared with the irregular chips produced through CM. In conclusion, our findings underscore the potential of UVAM in synergy with MQL to augment the machining of Al7075-T6 alloy, thereby yielding superior-quality machined components with enhanced operational efficiency. © 2025 Elsevier B.V., All rights reserved.