Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 9
    Citation - Scopus: 12
    On the Performance of Energy Criterion Method in Wi-Fi Transient Signal Detection
    (Mdpi, 2022) Mohamed, Ismail; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, Ali
    In the development of radiofrequency fingerprinting (RFF), one of the major challenges is to extract subtle and robust features from transmitted signals of wireless devices to be used in accurate identification of possible threats to the wireless network. To overcome this challenge, the use of the transient region of the transmitted signals could be one of the best options. For an efficient transient-based RFF, it is also necessary to accurately and precisely estimate the transient region of the signal. Here, the most important difficulty can be attributed to the detection of the transient starting point. Thus, several methods have been developed to detect transient start in the literature. Among them, the energy criterion method based on the instantaneous amplitude characteristics (EC-a) was shown to be superior in a recent study. The study reported the performance of the EC- a method for a set of Wi-Fi signals captured from a particular Wi-Fi device brand. However, since the transient pattern varies according to the type of wireless device, the device diversity needs to be increased to achieve more reliable results. Therefore, this study is aimed at assessing the efficiency of the EC-a method across a large set ofWi-Fi signals captured from variousWi-Fi devices for the first time. To this end, Wi-Fi signals are first captured from smartphones of five brands, for a wide range of signalto-noise ratio (SNR) values defined as low (3 to 5 dB), medium (5 to 15 dB), and high (15 to 30 dB). Then, the performance of the EC-a method and well-known methods was comparatively assessed, and the efficiency of the EC-a method was verified in terms of detection accuracy.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 8
    Flexible and Lightweight Mitigation Framework for Distributed Denial-Of Attacks in Container-Based Edge Networks Using Kubernetes
    (Ieee-inst Electrical Electronics Engineers inc, 2024) Koksal, Sarp; Catak, Ferhat Ozgur; Dalveren, Yaser
    Mobile Edge Computing (MEC) has a significant potential to become more prevalent in Fifth Generation (5G) networks, requiring resource management that is lightweight, agile, and dynamic. Container-based virtualization platforms, such as Kubernetes, have emerged as key enablers for MEC environments. However, network security and data privacy remain significant concerns, particularly due to Distributed Denial-of-Service (DDoS) attacks that threaten the massive connectivity of end-devices. This study proposes a defense mechanism to mitigate DDoS attacks in container-based MEC networks using Kubernetes. The mechanism dynamically scales Containerized Network Functions (CNFs) with auto-scaling through an Intrusion Detection and Prevention System (IDPS). The architecture of the proposed mechanism leverages distributed edge clusters and Kubernetes to manage resources and balance the load of IDPS CNFs. Experiments conducted in a real MEC environment using OpenShift and Telco-grade MEC profiles demonstrate the effectiveness of the proposed mechanism against Domain Name System (DNS) flood and Yo-Yo attacks. Results also verify that Kubernetes efficiently meets the lightweight, agile, and dynamic resource management requirements of MEC networks.
  • Article
    Radar Emitter Localization Based on Multipath Exploitation Using Machine Learning
    (Ieee-inst Electrical Electronics Engineers inc, 2024) Catak, Ferhat Ozgur; Al Imran, Md Abdullah; Dalveren, Yaser; Yildiz, Beytullah; Kara, Ali
    In this study, a Machine Learning (ML)-based approach is proposed to enhance the computational efficiency of a particular method that was previously proposed by the authors for passive localization of radar emitters based on multipath exploitation with a single receiver in Electronic Support Measures (ESM) systems. The idea is to utilize a ML model on a dataset consisting of useful features obtained from the priori-known operational environment. To verify the applicability and computational efficiency of the proposed approach, simulations are performed on the pseudo-realistic scenes to create the datasets. Well-known regression ML models are trained and tested on the created datasets. The performance of the proposed approach is then evaluated in terms of localization accuracy and computational speed. Based on the results, it is verified that the proposed approach is computationally efficient and implementable in radar detection applications on the condition that the operational environment is known prior to implementation.