1 results
Search Results
Now showing 1 - 1 of 1
Article Citation - WoS: 26Citation - Scopus: 30Micro-Cogeneration Application of a High-Temperature Pem Fuel Cell Stack Operated With Polybenzimidazole Based Membranes(Pergamon-elsevier Science Ltd, 2020) Budak, Yagmur; Devrim, YilserHigh temperature Proton Exchange Membrane Fuel Cells (HT-PEMFC) have attracted the attention of researchers in recent years due to their advantages such as working with reformed gases, easy heat management and compatibility with micro-cogeneration systems. In this study, it is aimed to designed, manufactured and tested of the HT-PEMFC stack based on Polybenzimidazole/Graphene Oxide (PBI/GO) composite membranes. The micro-cogeneration application of the PBI/GO composite membrane based stack was investigated using a reformat gas mixture containing Hydrogen/Carbon Dioxide/Carbon Monoxide (H-2/CO2/CO). The prepared HT-PEMFC stack comprises 12 cells with 150 cm(2) active cell area. Thermo-oil based liquid cooling was used in the HT-PEMFC stack and cooling plates were used to prevent coolant leakage between the cells. As a result of HTPEMFC performance studies, maximum 546 W and 468 W power were obtained from PBI/ GO and PBI membranes based HT-PEMFC stacks respectively. The results demonstrate that introducing GO into the PBI membranes enhances the performance of HT-PEMFC technology and demonstrated the potential of the HT-PEMFC stack for use in micro cogeneration applications. It is also underlined that the developed PBI/GO composite membranes have the potential as an alternative to commercially available PBI membranes in the future. (c) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

