Search Results

Now showing 1 - 2 of 2
  • Conference Object
    Citation - WoS: 2
    Citation - Scopus: 3
    Design Considerations for Sub-Ghz Multilayer Microstrip Antenna for Near Ground Communication Links in Rural Areas
    (Ieee, 2017) Bilgin, Gulsima; Yilmaz, Vadi Su; Aydin, Elif; Kara, Ali; Department of Electrical & Electronics Engineering; Electrical-Electronics Engineering
    This paper presents some preliminary results of design and development of sub-GHz multilayer microstip antenna for use in near ground communication applications. In design stage of the antenna, iterative approach was applied. Firstly, a two layer microstrip antenna design process is presented. Next, the corners of the patch were cut, and a vertical wall on all sides of the antenna were introduced. In this way, both the size and resonant freqeuncy can be tuned. Moreover, as an application specific requirement, it is intended to embed this antenna into a metal box in order to protect it from man-made and natural environmental effects. This was also studied, and effects of the embedding ground on the antenna characteristics were examined. It is shown that the designed antenna provides -27dB resturn loss, and 7.3dB peak gain at 915MHz with the dimension of 150x200x13mm. Some preliminary measurements have proven the simulations.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    A Miniaturized Multi-Layer Microstrip Antenna for Linear Wireless Sensor Network Monitoring Systems
    (Gazi Univ, 2022) Kara, Ali; Aydın, Elif; Benzaghta, Mohamed; Er, Burak; Bilgin, Gulsima
    This article presents a sub-GHz ISM band microstrip patch antenna based on the use of multi-layer compact structure, which overcomes the shortcomings of typical microstrip antennas such as low gain and high resonant frequency. The antenna was simulated using an electromagnetic simulator, ANSYS HFSS, and fabricated on two different substrates: RT Duroid 5880 and FR4 epoxy with a compact size of 100 x 100 x 8 mm3 (0.29λ × 0.29λ × 0.02λ). The simulated results of the antenna were then compared with the measured ones, and the two were observed to have a reasonable agreement. The proposed antenna operates in the sub-GHz license-free ISM band (862-875 MHz), with a gain value of 2.92 dB. Two prototypes of the proposed antenna were fabricated and used in a Linear Wireless Sensor Networks (LWSNs) monitoring system. Results show that the proposed antenna is a good candidate for those types of LWSNs systems.