2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 23Citation - Scopus: 27Nanocrystalline Metal Organic Framework (mil-101) Stabilized Copper Nanoparticles: Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane(Elsevier Science Sa, 2018) Baguc, Ismail Burak; Ertas, Ilknur Efecan; Yurderi, Mehmet; Bulut, Ahmet; Zahmakiran, Mehmet; Kaya, MuratThe copper nanoparticles stabilized by nanocrystalline MIL-101 framework (Cu/nano-MIL-101) was reproducibly prepared by following double solvent method combined with liquid phase chemical reduction technique. The characterization of the resulting new material was done by using various analytical techniques including ICP-OES, P-XRD, N-2-adsorption-desorption, XPS, FE-SEM, SEM-EDX, BFTEM and HAADF-STEM; the summation of their results reveals that the formation of well-dispersed and very small sized (0.8 nm) copper nanoparticles within nanocrystalline MIL-101 framework. The catalytic performance of Cu/nano-MIL-101 in terms of activity and stability was tested in the hydrolytic dehydrogenation of methylamine borane (CH3NH2BH3), which has been considered as one of the attractive materials for the efficient chemical hydrogen storage. Cu/nano-MIL-101 catalyzes the hydrolytic dehydrogenation of methylamine borane with high activity (turnover frequency; TOF = 257 mot H-2/mol Cu x h) and conversion ( > 99%) under air at room temperature. Moreover, these nano-MIL-101 framework stabilized copper nanoparticles show great durability against to sintering and leaching, which make Cu/nano-MIL-101 reusable nanocatalyst in the hydrolytic dehydrogenation of methylamine-borane. Cu/nano-MIL-101 nanocatalyst retains 83% of its inherent activity at complete conversion even at 10th recycle in the hydrolytic dehydrogenation of methylamine borane.Article Citation - WoS: 18Citation - Scopus: 20Cobalt nanoparticles supported on alumina nanofibers (Co/Al2O3): Cost effective catalytic system for the hydrolysis of methylamine borane(Pergamon-elsevier Science Ltd, 2019) Baguc, Ismail Burak; Yurderi, Mehmet; Bulut, Ahmet; Celebi, Metin; Kanberoglu, Gulsah Saydan; Zahmakiran, Mehmet; Baysal, AkinAmongst different amine-borane derivatives, methylamine-borane (CH3NH2BH3) seems to be one of the capable aspirants in the storing of hydrogen attributable to its high hydrogen capacity, stability and aptitude to generate hydrogen through its catalytic hydrolysis reaction under ambient conditions. In this research paper, we report that cobalt nano-particles supported on alumina nanofibers (Co/Al2O3) are acting as active nanocatalyst for catalytic hydrolysis of methylamine-borane. Co/Al2O3 nanocatalyst was fabricated by double-solvent method followed with wet-chemical reduction, and was characterized by utilizing various spectroscopic methods and imaging techniques. The results gathered from these analyses showed that the formation Al2O3 nanofibers supported cobalt(0) nanoparticles with a mean diameter of 3.9 +/- 1.2 nm. The catalytic feat of these cobalt nanoparticles was scrutinized in the catalytic hydrolysis of methylamine-borane by considering their activity and durability performances. They achieve releasing of 3.0 equivalent of H-2 via methylamine-borane hydrolysis at room temperature (initial TOF = 297 mol H-2/mol metal x h). Along with activity the catalytic durability of Co/Al2O3 was also studied by carrying out recyclability tests and it was found that these supported cobalt nanoparticles have good durability during the course of the catalytic recycles so that Co/Al2O3 preserves almost its innate activity at 5th catalytic recycle. The studies presented here also contains kinetic investigation of Co/Al2O3 catalyzed methylamine borane hydrolysis depending on the temperature, cobalt and methylamine borane concentrations, which were used to define rate expression and the activation energy of the catalytic reaction. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

