3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 47Citation - Scopus: 45Enhanced Hybrid Metaheuristic Algorithms for Optimal Sizing of Steel Truss Structures With Numerous Discrete Variables(Springer, 2017) Azad, Saeid KazemzadehThe advent of modern computing technologies paved the way for development of numerous efficient structural design optimization tools in the recent decades. In the present study sizing optimization problem of steel truss structures having numerous discrete variables is tackled using combined forms of recently proposed metaheuristic techniques. Three guided, and three guided hybrid metaheuristic algorithms are developed by integrating a design oriented strategy to the stochastic search properties of three recently proposed metaheuristic optimization techniques, namely adaptive dimensional search, modified big bang-big crunch, and exponential big bang-big crunch algorithms. The performances of the proposed guided, and guided hybrid metaheuristic algorithms are compared to those of standard variants through optimum design of real-size steel truss structures with up to 728 design variables according to AISC-LRFD specification. The numerical results reveal that the hybrid form of adaptive dimensional search and exponential big bang-big crunch algorithm is the most promising algorithm amongst the other investigated techniques.Article Citation - WoS: 60Citation - Scopus: 64Seeding the Initial Population With Feasible Solutions in Metaheuristic Optimization of Steel Trusses(Taylor & Francis Ltd, 2018) Azad, Saeid KazemzadehIn spite of considerable research work on the development of efficient algorithms for discrete sizing optimization of steel truss structures, only a few studies have addressed non-algorithmic issues affecting the general performance of algorithms. For instance, an important question is whether starting the design optimization from a feasible solution is fruitful or not. This study is an attempt to investigate the effect of seeding the initial population with feasible solutions on the general performance of metaheuristic techniques. To this end, the sensitivity of recently proposed metaheuristic algorithms to the feasibility of initial candidate designs is evaluated through practical discrete sizing of real-size steel truss structures. The numerical experiments indicate that seeding the initial population with feasible solutions can improve the computational efficiency of metaheuristic structural optimization algorithms, especially in the early stages of the optimization. This paves the way for efficient metaheuristic optimization of large-scale structural systems.Article Citation - WoS: 33Citation - Scopus: 36Monitored Convergence Curve: a New Framework for Metaheuristic Structural Optimization Algorithms(Springer, 2019) Azad, Saeid KazemzadehMetaheuristic optimization algorithms, by nature, depend on random processes, and therefore, performing numerous algorithm runs is inevitable to locate a reasonably good solution. Although executing the algorithms for small-size or trivial structural optimization problems could be computationally affordable, when dealing with challenging optimization problems, there is almost no chance of performing numerous independent runs of metaheuristics in a timely manner. This difficulty is basically due to the limitations in computational technologies as well as the excessive computational cost of such problems. In such cases that the number of independent runs is limited to a small number, each optimization run becomes highly valuable and, therefore, the stability of results becomes much more significant. In the present study, it is attempted to monitor the convergence curve of each succeeding run of the algorithm with respect to the information obtained in the previous runs. An easy-to-implement yet efficient framework is proposed for metaheuristic structural optimization algorithms where every succeeding run is monitored at certain intervals named as solution monitoring period. The solution monitoring period is selected such that, at each run, on the one hand, the algorithm could explore the search space to improve the solution quality, and on the other hand, the algorithm is occasionally forced to return to the previously visited more promising solutions if it is not able to improve the solution after a certain number of iterations. The numerical experiments using challenging test instances with up to 354 design variables indicate that, in general, the proposed approach helps to improve the solution quality as well as the robustness or stability of results in metaheuristic structural optimization.

