Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 11
    Citation - Scopus: 11
    A Standard Benchmarking Suite for Structural Optimization Algorithms: Iscso 2016-2022
    (Elsevier Science inc, 2023) Azad, Saeid Kazemzadeh; Azad, Saeıd Kazemzadeh; Azad, Sina Kazemzadeh; Azad, Saeıd Kazemzadeh; Department of Civil Engineering; Department of Civil Engineering
    Benchmarking is an essential part of developing efficient structural optimization techniques. Despite the advent of numerous metaheuristic techniques for solving truss optimization problems, benchmarking new algorithms is often carried out using a selection of classic test examples which are indeed unchallenging for contemporary sophisticated optimization algorithms. Furthermore, the limited optimization results available in the literature on new test examples are usually not accurately comparable. This is typically due to the lack of infromation about the performance of the investigated algorithms and the inconsistencies between the studies in terms of adopted test examples for benchmarking, optimization problem formulation, maximum number of objective function evaluations and other similar issues. Accordingly, there exists a need for developing new standard test suites composed of easily reproducible challenging test examples with rigorous and comparable performance evaluation results of algorithms on these test suites. To this end, the present work aims to propose a new baseline for benchmarking structural optimization algorithms, using a set of challenging sizing and shape optimization problems of truss structures selected from the international student competition in structural optimization (ISCSO) instances. The most recent six structural optimization examples from the ISCSO are tackled using a representative metaheuristic structural optimization algorithm. The statistical results of all the optimization runs using the proposed benchmarking suite are provided to pave the way for more rigorous benchmarking of structural optimization algorithms.
  • Article
    Citation - WoS: 23
    Citation - Scopus: 21
    Design Optimization of Real-Size Steel Frames Using Monitored Convergence Curve
    (Springer, 2021) Azad, Saeid Kazemzadeh; Azad, Saeıd Kazemzadeh; Azad, Saeıd Kazemzadeh; Department of Civil Engineering; Department of Civil Engineering
    It is an undeniable fact that there are main challenges in the use of metaheuristics for optimal design of real-size steel frames in practice. In general, steel frame optimization problems usually require an inordinate amount of processing time where the main portion of computational effort is devoted to myriad structural response computations during the optimization iterations. Moreover, the inherent complexity of steel frame optimization problems may result in poor performance of even contemporary or advanced metaheuristics. Beside the challenging nature of such problems, significant difference in geometrical properties of two adjacent steel sections in a list of available profiles can also mislead the optimization algorithm and may result in trapping the algorithm in a poor local optimum. Consequently, akin to other challenging engineering optimization instances, significant fluctuations could be observed in the final results of steel frame optimization problems over multiple runs even using contemporary metaheuristics. Accordingly, the main focus of this study is to improve the solution quality as well as the stability of results in metaheuristic optimization of real-size steel frames using a recently developed framework so-called monitored convergence curve (MCC). Two enhanced variants of the well-known big bang-big crunch algorithm are adopted as typical contemporary metaheuristic algorithms to evaluate the usefulness of the MCC framework in steel frame optimization problems. The numerical experiments using challenging test examples of real-size steel frames confirm the efficiency of the MCC integrated metaheuristics versus their standard counterparts.
  • Article
    Citation - WoS: 95
    Citation - Scopus: 118
    Adaptive Dimensional Search: a New Metaheuristic Algorithm for Discrete Truss Sizing Optimization
    (Pergamon-elsevier Science Ltd, 2015) Hasancebi, Oguzhan; Azad, Saeıd Kazemzadeh; Azad, Saeid Kazemzadeh; Azad, Saeıd Kazemzadeh; Department of Civil Engineering; Department of Civil Engineering
    In the present study a new metaheuristic algorithm called adaptive dimensional search (ADS) is proposed for discrete truss sizing optimization problems. The robustness of the ADS lies in the idea of updating search dimensionality ratio (SDR) parameter online during the search for a rapid and reliable convergence towards the optimum. In addition, several alternative stagnation-control strategies are integrated with the algorithm to escape from local optima, in which a limited uphill (non-improving) move is permitted when a stagnation state is detected in the course of optimization. Besides a remarkable computational efficiency, the ease of implementation and capability of locating promising solutions for challenging instances of practical design optimization are amongst the remarkable features of the proposed algorithm. The efficiency of the ADS is investigated and verified using two benchmark examples as well as three real-world problems of discrete sizing truss optimization. A comparison of the numerical results obtained using the ADS with those of other metaheuristic techniques indicates that the proposed algorithm is capable of locating improved solutions using much lesser computational effort. (C) 2015 Elsevier Ltd. All rights reserved.