Search Results

Now showing 1 - 4 of 4
  • Research Project
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Exact and Nonstandard Finite Difference Schemes for the Burgers Equation B(2, 2)
    (Tubitak Scientific & Technological Research Council Turkey, 2021) Köroğlu, Canan; Aydın, Ayhan
    In this paper, we consider the Burgers equation B(2, 2) . Exact and nonstandard finite difference schemes(NSFD) for the Burgers equation B(2, 2) are designed. First, two exact finite difference schemes for the Burgers equationB(2, 2) are proposed using traveling wave solution. Then, two NSFD schemes are represented for this equation. Thesetwo NSFD schemes are compared with a standard finite difference (SFD) scheme. Numerical results show that the NSFDschemes are accurate and efficient in the numerical simulation of the kink-wave solution of the B(2, 2) equation. We seethat although the SFD scheme yields numerical instability for large step sizes, NSFD schemes provide reliable results forlong time integration. Local truncation errors show that the NSFD schemes are consistent with the B(2, 2) equation.
  • Book Part
    Multisymplectic Integrators for Coupled Nonlinear Partial Differential Equations
    (Nova Science Publishers, Inc., 2012) Karas̈ozen,B.; Aydın, Ayhan; Aydin,A.; Aydın, Ayhan; Mathematics; Mathematics
    The numerical solution of nonlinear partial differential equations (PDEs) using symplectic geometric integrators has been the subject of many studies in recent years. Many nonlinear partial differential equations can be formulated as an infinite dimensional Hamiltonian system. After semi-discretization in the space variable, a system of Hamiltonian ordinary differential equations (ODEs) is obtained, for which various symplectic integrators can be applied. Numerical results show that symplectic schemes have superior performance, especially in long time simulations. The concept of multisymplectic PDEs and multisymplectic schemes can be viewed as the generalization of symplectic schemes. In the last decade, many multisymplectic methods have been proposed and applied to nonlinear PDEs, like to nonlinear wave equation, nonlinear Schr̈odinger equation, Korteweg de Vries equation, Dirac equation, Maxwell equation and sine-Gordon equation. In this review article, recent results of multisymplectic integration on the coupled nonlinear PDEs, the coupled nonlinear Schr̈odinger equation, the modified complex Korteweg de Vries equation and the Zakharov system will be given. The numerical results are discussed with respect to the stability of the schemes, accuracy of the solutions, conservation of the energy and momentum, preservation of dispersion relations. © 2012 Nova Science Publishers, Inc. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    A Convergent Two-Level Linear Scheme for the Generalized Rosenau–kdv–rlw Equation
    (Tubitak Scientific & Technological Research Council Turkey, 2019) Aydın, Ayhan
    A new convergent two-level finite difference scheme is proposed for the numerical solution of initial valueproblem of the generalized Rosenau–KdV–RLW equation. The new scheme is second-order, linear, conservative, andunconditionally stable. It contains one free parameter. The impact of the parameter to error of the numerical solutionis studied. The prior estimate of the finite difference solution is obtained. The existence, uniqueness, and convergence ofthe scheme are proved by the discrete energy method. Accuracy and reliability of the scheme are tested by simulating thesolitary wave graph of the equation. Wave generation subject to initial Gaussian condition has been studied numerically.Different wave generations are observed depending on the dispersion coefficients and the nonlinear advection term.Numerical experiments indicate that the present scheme is conservative, efficient, and of high accuracy, and well simulatesthe solitary waves for a long time.