Search Results

Now showing 1 - 6 of 6
  • Article
    Effectiveness of Boric Acid in Sepsis in Rats With Cecal Perforation
    (Springer Nature, 2025) Kurtipek, Ali Can; Dursun, Ali Dogan; Yigman, Zeynep; Ozdemir, Cagri; Kucuk, Aysegul; Gonullu, Ugur; Arslan, Mustafa
    Introduction and AimSepsis is a systemic inflammatory response that develops in the host against microorganisms, which results in end-organ damage. Boric acid (BA) has been shown to have immune modulatory effects in vitro and in animal studies. The aim of the study is to investigate the effects of high dose BA on lung and kidney tissues in rats with sepsis induced by the CLP method.Method28 rats were randomly divided into four groups: Group C (control group), Group BA, Group CLP (cecal ligation and puncture), and Group CLP + BA. Cecum was ligated below the ileocecal valve and punctured. BA was administered to the treatment groups at an intraperitoneal dose of 200 mg/kg, and at the end of 24 h, lung and kidney tissue samples were collected and evaluated for biochemical and histopathological parameters.ResultsHistopathologically, in kidney tissue, CLP + BA group showed significantly less peritubular capillary dilatation and brush border loss in the proximal tubule epithelium compared to the CLP group. In lung tissue, CLP + BA group had significantly less alveolar wall thickening compared to the CLP group. Biochemical analyses indicated that BA administration reduced oxidative stress in both renal and lung tissues.ConclusionWe found that intraperitoneal administration of high dose boric acid partially ameliorated the tissue damage in rats subjected to CLP induced sepsis. Further studies are needed regarding the dosage and application at different time points.
  • Article
    Citation - Scopus: 3
    Protective Effects of Metformin in Non-Diabetic Rats With Experimentally Induced Lower Extremity Ischemia-Reperfusion Injury
    (Turkish National Vascular and Endovascular Surgery Society, 2025) Küçük, Ayşegül; Dursun, Alı Dogan; Arslan, Mustafa; Sezen, Şaban Cem; Yıldırım, Alperen Kutay; Özer, Abdullah; Demirtas, Huseyin
    Aim: Lower extremity ischemia-reperfusion (IR) injury can lead to substantial skeletal muscle damage and systemic complications, primarily driven by oxidative stress and inflammation. In addition to its well-known glucose-lowering effects, metformin possesses antioxidant and anti-inflammatory properties that may confer protection against tissue damage caused by IR. This study aims to evaluate the potential protective effects of metformin on skeletal muscle injury using a rat model of lower extremity IR.Material and Methods: A total of twenty-four male Wistar albino rats were randomly divided into four experimental groups: Control (C), Ischemia-Reperfusion (IR), IR with metformin at 4 mg/kg (IR+M4), and IR with metformin at 8 mg/kg (IR+M8). Ischemia was induced by clamping the infrarenal aorta for 45 minutes, followed by a reperfusion period of 120 minutes. In the treatment groups, metformin was administered intraperitoneally at the onset of ischemia. Gastrocnemius muscle tissues were harvested for subsequent histopathological and biochemical evaluations, including measurements of Total Antioxidant Status (TAS), Total Oxidant Status (TOS), and Oxidative Stress Index (OSI).Results: Histopathological analysis demonstrated a significant reduction in muscle atrophy, degeneration, leukocyte infiltration, and fiber fragmentation in the IR+M8 group compared to the IR group. Biochemical assessments showed that TAS levels were considerably elevated, whereas TOS and OSI levels were markedly reduced in the metformin-treated groups, with the most prominent effects observed at the higher dosage of 8 mg/kg.Conclusion: The findings indicate that metformin exerts a dose-dependent protective effect against skeletal muscle injury resulting from lower extremity ischemia-reperfusion in rats. These protective properties are likely due to metformin’s antioxidant and anti-inflammatory mechanisms, highlighting its potential therapeutic value in mitigating IR-induced tissue damage.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    The Effect of Cerium Oxide (ceo2) on Ischemia-Reperfusion Injury in Skeletal Muscle in Mice With Streptozocin-Induced Diabetes
    (Mdpi, 2024) Ozer, Abdullah; Sengel, Necmiye; Kucuk, Ayseguel; Yigman, Zeynep; Ozdemir, Cagri; Kilic, Yigit; Arslan, Mustafa
    Objective: Lower extremity ischemia-reperfusion injury (IRI) may occur with trauma-related vascular injury and various vascular diseases, during the use of a tourniquet, in temporary clamping of the aorta in aortic surgery, or following acute or bilateral acute femoral artery occlusion. Mitochondrial dysfunction and increased basal oxidative stress in diabetes may cause an increase in the effects of increased reactive oxygen species (ROS) and mitochondrial dysfunction due to IRI. It is of great importance to examine therapeutic approaches that can minimize the effects of IRI, especially for patient groups under chronic oxidative stress such as DM. Cerium oxide (CeO2) nanoparticles mimic antioxidant enzymes and act as a catalyst that scavenges ROS. In this study, it was aimed to investigate whether CeO2 has protective effects on skeletal muscles in lower extremity IRI in mice with streptozocin-induced diabetes. Methods: A total of 38 Swiss albino mice were divided into six groups as follows: control group (group C, n = 6), diabetes group (group D, n = 8), diabetes-CeO2 (group DCO, n = 8), diabetes-ischemia/reperfusion (group DIR, n = 8), and diabetes-ischemia/reperfusion-CeO2 (group DIRCO, n = 8). The DCO and DIRCO groups were given doses of CeO2 of 0.5 mg/kg intraperitoneally 30 min before the IR procedure. A 120 min ischemia-120 min reperfusion period with 100% O-2 was performed. At the end of the reperfusion period, muscle tissues were removed for histopathological and biochemical examinations. Results: Total antioxidant status (TAS) levels were found to be significantly lower in group DIR compared with group D (p = 0.047 and p = 0.022, respectively). In group DIRCO, total oxidant status (TOS) levels were found to be significantly higher than in group DIR (p < 0.001). The oxidative stress index (OSI) was found to be significantly lower in group DIR compared with group DCO (p < 0.001). Paraoxanase (PON) enzyme activity was found to be significantly increased in group DIR compared with group DCO (p < 0.001). The disorganization and degeneration score for muscle cells, inflammatory cell infiltration score, and total injury score in group DIRCO were found to be significantly lower than in group DIR (p = 0.002, p = 0.034, and p = 0.001, respectively). Conclusions: Our results confirm that CeO2, with its antioxidative properties, reduces skeletal muscle damage in lower extremity IRI in diabetic mice.
  • Conference Object
    Citation - Scopus: 2
    Uav Detection and Ranging With 77-81 Ghz Fmcw Radar
    (Ieee, 2022) Doganay, Bengisu; Arslan, Mustafa; Demir, Efe Can; Coruk, Remziye Busra; Gokdogan, Bengisu Yalcinkaya; Aydin, Elif
    In this study, detection of unmanned aerial vehicles (UAV), determination of radar cross-section (RCS) values, and range estimation were performed using a commercial off-the-shelf (COTS) millimeter-wave Frequency Modulated Continuous Wave (mmWave FMCW) radar system in the 77-81 GHz frequency band. The measurements were carried out in a laboratory environment using a single transceiver antenna without the need for an anechoic chamber. RCS values of different vertically and horizontally positioned UAVs were measured experimentally along the 360 degrees aspect angle, and the simulated results obtained from computational tool were compared with the experimental results. The measurement and simulation results, together with the range estimation, matched with high accuracy.
  • Conference Object
    The Effect of Different Doses Apelin 13 on Erythrocyte Deformability in Rats
    (Wiley, 2019) Dursun, Ali Dogan; Ozdemir, Cagri; Comu, Faruk Metin; Kucuk, Aysegul; Arslan, Mustafa
    [No Abstract Available]
  • Conference Object
    Investigation of Analgesic Minimum Effective Dose of Apelin-13 With Different Doses of Intraperitoneal Injections and its Effects on Kidney Tissue
    (Wiley, 2020) Dursun, Ali; Ozdemir, Cagri; Sezen, Saban; Kucuk, Aysegul; Arslan, Mustafa
    [No Abstract Available]