5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 2Citation - Scopus: 2Synthesis, Properties, and Electrochemistry of a Photochromic Compound Based on Dithienylethene and Prodot(Tubitak Scientific & Technological Research Council Turkey, 2015) Algi, Melek Pamuk; Cihaner, Atilla; Algi, FatihThe synthesis, photochromic features, and electrochemistry of a novel material based on dithienylethene (DTE) and 3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (didecyl-ProDOT) units are described. It is noteworthy that 1,2-bis (5-(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2-methylthiophen-3-yl)cyclopent-1-ene can be efficiently switched between open and closed states by light in both solution and in the solid poly(methyl metacrylate) (PMMA) matrix. It is also found that the emission of this novel compound can be switched on and off upon irradiation.Article Citation - WoS: 20Citation - Scopus: 22Electrochemical and Optical Properties of an Azo Dye Based Conducting Copolymer(Tubitak Scientific & Technological Research Council Turkey, 2009) Cihaner, Atilla; Algi, FatihThe electrochemical and optical properties of a novel conducting copolymer called poly(2,5'-dimethyl-[4-(2,5-di-thiophen-2-yl-pyrrol-1-yl)-phenyl]azobenzene-co-(3,4-ethylenedioxythiophene)) (poly(1-co-EDOT)) are reported. Electrochemically synthesized poly(1-co-EDOT) based on the azo dye has a well-defined and reversible redox couple (0.37 V vs. Ag/AgCl) with good cycle stability. The copolymer film exhibits high conductivity (13 S/cm) as well as electrochromic behavior (magenta when neutralized and transmissive sky blue when oxidized). Furthermore, electro-optically active copolymer film has a low band gap of 1.79 eV with a pi-pi* transition at 555 nm.Article Citation - WoS: 7Citation - Scopus: 9Design, Synthesis, Photochromism and Electrochemistry of a Novel Material With Pendant Photochromic Units(Pergamon-elsevier Science Ltd, 2014) Algi, Melek Pamuk; Cihaner, Atilla; Algi, FatihIn the present work, the synthesis, photochromism and electrochemistry of a novel material 1, 1-(4-[3,4-bis(2,5-dimethyl-3-thienyl)cyclopent-3-en-1-yl]phenyl)-2,5-di-2-thienyl-1H-pyrrole, with pendant dithienylethene (DTE) photochromic units are described. It should be noted that the system I can be reversibly and efficiently switched between open (1o) and closed (1c) states by light in both solution and in the solid poly(methyl methacrylate) matrix. It is also noteworthy that the two isomers (1o and 1c) of this novel system 1 can be smoothly polymerized on ITO by electrochemical means. Surprisingly, the DTE unit in I does not retain its photochemical switching properties after immobilization onto ITO. The morphology of the polymer film was investigated by AFM analysis. Furthermore, it was found that the polymer exhibited remarkable electrochromic features that can be switched from green in the neutral state to violet state under applied external potentials without disturbing the photochromic units. (C) 2014 Elsevier Ltd. All rights reserved.Article Citation - WoS: 9Citation - Scopus: 10The Synthesis, Characterization and Energy Transfer Efficiency of a Dithienylpyrrole and Bodipy Based Donor-Acceptor System(Tubitak Scientific & Technological Research Council Turkey, 2009) Atalar, Taner; Cihaner, Atilla; Algi, FatihA dithienylpyrrole-BODIPY based donor-acceptor system with 1,4-phenylene spacer as a model system for energy transfer was designed and synthesized. Absorption and emission spectra have revealed an efficient resonance energy transfer from dithienylpyrrole as donor to BODIPY as acceptor.Article Citation - WoS: 13Citation - Scopus: 15Atomistic Engineering of Chemiluminogens: Synthesis, Properties and Polymerization of 2,3-Dihydro Scaffolds(Springer/plenum Publishers, 2017) Algi, Melek Pamuk; Tirkeş, Seha; Oztas, Zahide; Cihaner, Atilla; Tirkes, Seha; Cihaner, Atilla; Algi, Fatih; Tirkeş, Seha; Cihaner, Atilla; Chemical Engineering; Chemical EngineeringTwo chemiluminescent compounds containing 2,5-di(thien-2-yl)pyrrole and pyridazine units, namely 5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (5) and 6-phenyl-5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (6), were successfully synthesized and electrochemically polymerized. The compounds have chemiluminescent properties and glow in the presence of hydrogen peroxide in basic medium. The intensity of the glow can be increased dramatically by using Fe3+ ions, hemin (1.0 ppm) or blood samples (1.0 ppm) as catalyst. The compounds 5 and 6 have one well-defined irreversible oxidation peak at 1.08 V and 1.33 V vs Ag/AgCl, respectively. Electrochemical polymerization of both 5 and 6 were carried out successfully by repeating potential scanning in the presence of BF3. Et2O in an electrolyte solution of 0.1 M LiClO4 dissolved in acetonitrile. The electronic band gaps (E-g) of the polymers P5 and P6 were found to be 2.02 eV and 2.16 eV, respectively. On the other hand, the corresponding polymers are electroactive and exhibited electrochromic features.

