2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 3Citation - Scopus: 4Preparation and Characterization of Cdo/In6< Thin Film Transistors(Univ Fed Sao Carlos, dept Engenharia Materials, 2020) AlGarni, Sabah E.; Qasrawi, A. F.In this study, the design and characterization of CdO/InSe thin film transistors (TFT) that are grown onto Au substrates are investigated. The devices are also subjected to a vacuum annealing process at 300 degrees C to enhance the structure and electrical performance. It was observed that the growth of polycrystalline monoclinic In6Se7 phase of InSe is preferred at this annealing temperature when coated onto Au/CdO substrates. Electrically, noisy negative capacitance effect accompanied with resonance-antiresonance phenomena is observed in the capacitance spectra of the as prepared TFT devices. The annealing of the TFT devices reduced the noise in the capacitance, conductance, impedance, and reflection coefficient and return loss spectral responses. The heat treated TFT devices displayed low bandpass, high bandpass and bandstop filter characteristics in the studied frequency domain (0.01-1.80 GHz) indicating the applicability of these devices as radio wave-microwave resonators.Article Citation - WoS: 7Citation - Scopus: 8Nonlinear Optical Performance of Cdo/Inse Interfaces(Iop Publishing Ltd, 2020) AlGarni, Sabah E.; Qasrawi, A. F.In this article, the growth nature, structural and optical properties of CdO/InSe interfaces are investigated. The CdO/InSe interfaces are prepared by the thermal vacuum deposition technique. Structurally, while the CdO exhibited cubic structure, the InSe layer was amorphous in nature. The morphological analyses have shown that the interface is composed of randomly distributed circular grains of average sizes of similar to 170 nm. The interfacing of the CdO and InSe resulted in enhancing the light absorbability of CdO by similar to 21 times in the IR range. It also showed well aligned conduction bands and valence band offset of 0.72 eV. The Drude-Lorentz modeling of the imaginary part of the dielectric spectra of the CdO/InSe interfaces has shown that the device is suitable for the fabrication of field effect transistors. The drift mobility of free carriers at the interface reached 42.27 cm(2)/Vs. In addition, a quality factor larger than 10(3) is achieved in the IR range indicating the suitability of these optical interfaces to store electromagnetic energy. These properties are important as they shows the applicability of the CdO/InSe interface in solar cells and optoelectronics as optical signal receivers or converters.

