1 results
Search Results
Now showing 1 - 1 of 1
Doctoral Thesis Yapay Sinir Ağları ve Bulanık Mantık Yöntemleri Kullanarak Yük Talep Tahmini(2022) Al-anı, Barq Raad Khashea; Erkan, Turan ErmanBu çalışma, Türkiye veya 2017 ve 2018'deki saatlik elektrik yüklerini tahmin etmek için yük talep verilerini tahmin etmek için yapay sinir ağları (YSA) ve bulanık mantığın (FL) kullanılmasını önermektedir. 2017-2018 yılları için EPİAŞ verilerine dayalı saatlik elektrik yükü olarak Gerçek Zamanlı Tüketimi kullandık. Yük tahmini, iki makine öğrenme tekniği kullanılarak gerçekleştirilmiştir: YSA ve bulanık mantık FL. Öngörülen veriler, bir grafik üzerinde çizilerek gerçek verilerle karşılaştırıldı. Bu çalışmada, Türkiye'nin güç sistemlerinde yük tahmini talebini optimize etmek için YSA ve FL yöntemleri kullanılmıştır. Daha iyi bir görselleştirme modeli elde etmek için ilk ve son 200 saat YSA üzerinde çizildi ve her alandan saatlik tahminler eklenerek Türkiye için genel tahmini saatlik yük hesaplandı. 2017 yılı minimum ve maksimum okumaları 18851,35 MWh ve 47062,40 MWh, ortalama ve standart sapma okumaları ise 33102,19 Mwh ve 4968,67 MWh'dir. Sonuç olarak, bu modellerin karşılaştırılması, tümü farklı yük modelleri ve kökenleri olan yükü tahmin etmek için kullanıldı. Seriler yıl boyunca durağandır ve Ağustos ayı boyunca zirve yapar. 2017 ve 2018 için FL için MAPE değerleri sırasıyla 3.7986094 ve 5.28635983'tür ve bu çok iyidir ve yüksek doğru tahmin sonuçlarına düşer. FL'nin her iki yıl için YSA'dan daha iyi bir tahmin verdiği sonucuna varılabilir. Elektriksel tepe azaltma, enerji talebini yönetmek için herhangi bir planın hayati bir bileşenidir ve elektrik yükünün tahmini, enerji talebi yönetimi hedeflerini karşılamak için tepe yük talebi azaltmalarının planlanmasına yardımcı olur. FL'nin bize her iki yıl için YSA'dan daha iyi bir tahmin verdiği sonucuna varılabilir. Ev, enerji yönetimi araştırması, bu çalışmada önerilen yeni yük tahmin modellerinden faydalanacaktır.
