Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 3
    Citation - Scopus: 5
    Impact of Green Wall and Roof Applications on Energy Consumption and Thermal Comfort for Climate Resilient Buildings
    (Mdpi, 2025) Turhan, Cihan; Carpino, Cristina; Austin, Miguel Chen; Ozbey, Mehmet Furkan; Akkurt, Gulden Gokcen
    Nowadays, reducing energy consumption and obtaining thermal comfort are significant for making educational buildings more climate resilient, more sustainable, and more comfortable. To achieve these goals, a sustainable passive method is that of applying green walls and roofs that provide extra thermal insulation, evaporative cooling, a shadowing effect, and the blockage of wind on buildings. Therefore, the objective of this study is to evaluate the impact of green wall and roof applications on energy consumption and thermal comfort in an educational building. For this purpose, a university building in the Csb climate zone is selected and monitored during one year, as a case study. Then, the case building is modelled in a well-calibrated dynamic building energy simulation tool and twenty-one different plant species, which are mostly used for green walls and roofs, are applied to the envelope of the building in order to determine a reduction in energy consumption and an increase in thermal comfort. The Hedera canariensis gomera (an ivy species) plant is used for green walls due to its aesthetic appeal, versatility, and functional benefits while twenty-one different plants including Ophiopogon japonicus (Mando-Grass), Phyllanthus bourgeoisii (Waterfall Plant), and Phoenix roebelenii (Phoenix Palm) are simulated for the green roof applications. The results show that deploying Hedera canariensis gomera to the walls and Phyllanthus bourgeoisii to the roof could simultaneously reduce the energy consumption by 9.31% and increase thermal comfort by 23.55% in the case building. The authors acknowledge that this study is solely based on simulations due to the high cost of all scenarios, and there are inherent differences between simulated and real-world conditions. Therefore, the future work will be analysing scenarios in real life. Considering the limited studies on the effect of different plant species on energy performance and comfort, this study also contributes to sustainable building design strategies.
  • Article
    Citation - WoS: 21
    Citation - Scopus: 24
    Thermal Comfort Analysis of Historical Mosques. Case Study: the Ulu Mosque, Manisa, Turkey
    (Elsevier Science Sa, 2021) Diler, Yusuf; Turhan, Cihan; Arsan, Zeynep Durmus; Akkurt, Gulden Gokcen
    Mosques are sanctuary places for Muslims where they can perform their religious activities and also can communicate with each other. On the other hand, historical mosques may contain artworks which have cultural heritage values. These mosques originally have not any Heating, Ventilating and Air Conditioning systems. For this reason, obtaining thermal comfort becomes a significant issue. In this study, a systematic approach on monitoring and evaluating thermal comfort of historical mosques were developed. As a case study, The Ulu Mosque, Manisa/Turkey was monitored from 2015 to 2018, and thermal comfort evaluation of the mosque was conducted during prayer times based on the method provided by ISO 7730. A dynamic Building Energy Performance Software, DesignBuilder, was used to model the mosque, and the model was calibrated by using hourly indoor temperature data. The calibrated model was then used to evaluate existing conditions of the mosque and develop retrofitting scenarios in order to increase thermal comfort of prayers. Thirteen different scenarios were proposed to improve thermal comfort of prayers during worship periods. The results were evaluated according to EN 16883 for conservation of cultural heritage of the mosque. Electrical radiator heating with intermittent operating schedules was obtained as the best scenario to protect cultural heritage via artworks, while decreasing disssatisfaction level of the prayers from 45% to 10% in winter months. Additionally, intermittent operation saved 46.9% of energy compared to continuous operating schedule. (C) 2021 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 34
    Citation - Scopus: 41
    Development of a Personalized Thermal Comfort Driven Controller for Hvac Systems
    (Pergamon-elsevier Science Ltd, 2021) Turhan, Cihan; Simani, Silvio; Akkurt, Gulden Gokcen
    Increasing thermal comfort and reducing energy consumption are two main objectives of advanced HVAC control systems. In this study, a thermal comfort driven control (PTC-DC) algorithm was developed to improve HVAC control systems with no need of retrofitting HVAC system components. A case building located in Izmir Institute of Technology Campus-Izmir-Turkey was selected to test the developed system. First, wireless sensors were installed to the building and a mobile application was developed to monitor/ collect temperature, relative humidity and thermal comfort data of an occupant. Then, the PTC-DC algorithm was developed to meet the highest occupant thermal comfort as well as saving energy. The prototypes of the controller were tested on the case building from July 3rd, 2017 to November 1st, 2018 and compared with a conventional PID controller. The results showed that the developed control algorithm and conventional controller satisfy neutral thermal comfort for 92 % and 6 % of total measurement days, respectively. From energy consumption point of view, the PTC-DC decreased energy consumption by 13.2 % compared to the conventional controller. Consequently, the PTC-DC differs from other works in the literature that the prototype of PTC-DC can be easily deployed in real environments. Moreover, the PTC-DC is low-cost and user-friendly. (c) 2021 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 13
    Integration of Psychological Parameters Into a Thermal Sensation Prediction Model for Intelligent Control of the Hvac Systems
    (Elsevier Science Sa, 2023) Turhan, Cihan; Ozbey, Mehmet Furkan; Lotfi, Bahram; Akkurt, Gulden Gokcen
    Conventional thermal comfort models take physiological parameters into account on thermal comfort models. On the other hand, psychological behaviors are also proven as a vital parameter which affects the thermal sensation. In the literature, limited studies which combine both physiological and psychological parameters on the thermal sensation models are exist. To this aim, this study develops a novel Thermal Sensation Prediction Model (TSPM) in order to control the HVAC system by considering both parameters. A data-driven TSPM, which includes Fuzzy Logic (FL) model, is developed and coded using Phyton language by the authors. Two physiological parameters (Mean Radiant Temperature and External Temperature) and one psychological parameter (Emotional Intensity Score (EIS) including Vigour, Depression, Tension with total of 32 subscales) are selected as inputs of the model. Besides the physiological parameters which are decided intentionally considering a manual ventilated building property, the most influencing three sub- psychological parameters on thermal sensation are also selected in the study. While the physiological parameters are measured via environmental data loggers, the psychological parameters are collected simultaneously by the Profile of Mood States questionnaire. A total of 1159 students are participated to the questionnaire at a university study hall between 15th of August 2021 and 15th of September 2022. The results showed that the novel model predicted Thermal Sensation Vote (TSV) with an accuracy of 0.92 of R2. The output of this study may help to develop an integrated Heating Ventilating and Air Conditioning (HVAC) system with Artificial Intelligence - enabled Emulators that also includes psychological parameters.
  • Article
    Citation - WoS: 15
    Citation - Scopus: 11
    The Relation Between Thermal Comfort and Human-Body Exergy Consumption in a Temperate Climate Zone
    (Elsevier Science Sa, 2019) Turhan, Cihan; Akkurt, Gulden Gokcen
    Human body exergy balance calculation method gives minimum human body exergy consumption rates at thermal neutrality (TSV = 0) providing more information on human thermal responses than other methods. The literature is lacking the verification of this method in various climatic zones. The aim of this study is to investigate the relationship between thermal comfort and human body exergy consumption in a temperate climate zone. A small office building in Izmir Institute of Technology campus, Izmir/Turkey, was chosen as a case building and equipped with measurement devices. The occupant was subjected to a survey via a mobile application to obtain his Thermal Sensation Votes. Objective data were collected via sensors and used for predicting occupant thermal comfort and for exergy balance calculations. Under given conditions, the results show that Thermal Sensation Votes are generally zero at a T-i range of 21-23 degrees C and, are mostly lower than Predicted Mean Votes in summer while the opposite is observed in winter. Predicted Mean Votes at minimum Human Body Exergy Consumption rates were on slightly warm side while Thermal Sensation Votes are zero. It means that for given case, the HBexC rate calculation gave a better prediction of the environmental parameters for the best thermal comfort. (C) 2019 Elsevier B.V. All rights reserved.