Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    Asymptotic Equivalence of Impulsive Dynamic Equations on Time Scales
    (Hacettepe Univ, Fac Sci, 2023) Akgol, Sibel Dogru
    The asymptotic equivalence of linear and quasilinear impulsive dynamic equations on time scales, as well as two types of linear equations, are proven under mild conditions. To establish the asymptotic equivalence of two impulsive dynamic equations a method has been developed that does not require restrictive conditions, such as the boundedness of the solutions. Not only the time scale extensions of former results have been obtained, but also improved for impulsive differential equations defined on the real line. Some illustrative examples are also provided, including an application to a generalized Duffing equation.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    Existence of Solutions for First Order Impulsive Periodic Boundary Value Problems on Time Scales
    (Univ Nis, Fac Sci Math, 2023) Georgiev, Svetlin G.; Akgol, Sibel Dogru; Kus, M. Eymen
    In this paper we study a class of first order impulsive periodic boundary value problems on time scales. We give conditions under which the considered problem has at least one and at least two solutions. The arguments are based upon recent fixed point index theory in cones of Banach spaces for a k-set contraction perturbed by an expansive operator. An example is given to illustrate the obtained result.