Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    Existence of Solutions for Odd-Order Multi-Point Impulsive Boundary Value Problems on Time Scales
    (Walter de Gruyter Gmbh, 2022) Georgiev, Svetlin G.; Akgol, Sibel Dogru; Kus, Murat Eymen
    Using a fixed point theorem due to Schaefer, the existence of solutions for an odd-order m-point impulsive boundary value problem on time scales is obtained. The problem considered is of general form, where both the differential equation and the impulse effects are nonlinear. Illustrative examples are provided.
  • Article
    Citation - Scopus: 3
    De La Vallee Poussin Inequality for Impulsive Differential Equations
    (Walter de Gruyter Gmbh, 2021) Akgol, Sibel Dogru; Ozbekler, Abdullah
    The de la Vallee Poussin inequality is a handy tool for the investigation of disconjugacy, and hence, for the oscillation/nonoscillation of differential equations. The results in this paper are extensions of former those of Hartman and Wintner [Quart. Appl. Math. 13 (1955), 330-332] to the impulsive differential equations. Although the inequality first appeared in such an early date for ordinary differential equations, its improved version for differential equations under impulse effect never has been occurred in the literature. In the present study, first, we state and prove a de la Vallee Poussin inequality for impulsive differential equations, then we give some corollaries on disconjugacy. We also mention some open problems and finally, present some examples that support our findings. (C) 2021 Mathematical Institute Slovak Academy of Sciences