2 results
Search Results
Now showing 1 - 2 of 2
Review Citation - WoS: 34Citation - Scopus: 38Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: a Review(Dove Medical Press Ltd, 2020) Rabiee, Navid; Ahmadi, Sepideh; Arab, Zeynab; Bagherzadeh, Mojtaba; Safarkhani, Moein; Nasseri, Behzad; Tayebi, LobatWith the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting approach for cancer treatment in the decades ahead to meet our growing societal needs.Review Citation - WoS: 190Citation - Scopus: 199Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery(Elsevier Sci Ltd, 2020) Ahmadi, Sepideh; Rabiee, Navid; Bagherzadeh, Mojtaba; Elmi, Faranak; Fatahi, Yousef; Farjadian, Fatemeh; Hamblin, Michael R.In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive characteristic is the ability to release one or more drugs (or release drugs along with genes) in a controlled sequence at different times or at different sites. This approach can lengthen gene expression periods, reduce the side effects of drugs, enhance the efficacy of drugs, and induce an anti-proliferative effect on cancer cells due to the synergistic effects of genes and drugs. The key objective of this review is to summarize recent progress in SR-based drug/gene delivery systems for cancer and other diseases. (C) 2020 Elsevier Ltd. All rights reserved.

