Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Lyapunov Type Inequalities for Nth Order Forced Differential Equations With Mixed Nonlinearities
    (Amer inst Mathematical Sciences-aims, 2016) Agarwal, Ravi P.; Ozbekler, Abdullah
    In the case of oscillatory potentials, we present Lyapunov type inequalities for nth order forced differential equations of the form x((n))(t) + Sigma(m)(j=1) qj (t)vertical bar x(t)vertical bar(alpha j-1)x(t)= f(t) satisfying the boundary conditions x(a(i)) = x(1)(a(i)) = x(11)(ai) = center dot center dot center dot = x((ki))(ai) = 0; i = 1, 2,..., r, where a(1) < a(2) < ... < a(r), 0 <= k(i) and Sigma(r)(j=1) k(j) + r = n: r >= 2. No sign restriction is imposed on the forcing term and the nonlinearities satisfy 0 < alpha(l) < ... < alpha a(j) < 1 < alpha a(j+1) < ... < alpha(m) < 2. The obtained inequalities generalize and compliment the existing results in the literature.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Lyapunov Type Inequalities for Second Order Sub and Super-Half Differential Equations
    (Dynamic Publishers, inc, 2015) Agarwal, Ravi P.; Ozbekler, Abdullah; Mathematics
    In the case of oscillatory potential, we present a Lyapunov type inequality for second order differential equations of the form (r(t)Phi(beta)(x'(t)))' + q(t)Phi(gamma)(x(t)) = 0, in the sub-half-linear (0 < gamma < beta) and the super-half-linear (0 < beta < gamma < 2 beta) cases where Phi(*)(s) = vertical bar s vertical bar*(-1)s.