Search Results

Now showing 1 - 4 of 4
  • Master Thesis
    Görüntü İşleme Yöntemlerı ile Araç Logo Tanıma
    (2016) Albera, Sumıa; Şengül, Gökhan
    Araç logolarının tanımlanması, farkli çevre şartlarında araçların logolarının yüksek performans ile algılanması ve sınıflandırılması yeteneği olarak tanımlanabilir. Logo tanıma, devlet kurumları, askeri alanlar gibi kontrol gerektiren bölgelerde güvenlik ve gözetleme amacıyla kullanılmaktadır. Logo tanımlamada öncelikle logo görüntüleri okunur, analiz edilir ve logonun ait olduğu üretici belirlenir. Bu tez çalışmasının amacı, araç logolarının tanımlanması için kullanılan üç farklı yöntemin gürültülü ve gürültüsüz ortamlardaki başarımlarını araştırmak ve bu yöntemlerin karşılaştırmasını yapmaktır. Bu tez çalışmasında logo tanımlama için SURF, LBP ve GLCM yöntemleri denenmiştir. LBP ve GLCM yöntemleri için sınıflandırıcı olarak kNN kullanılmıştır. Önerilen yöntemler biri üreticilerin internet sitelerinden alınan görüntüler diğeri ise doğrudan araçların logoların fotoğraflarının çekilmesi ile elde edilen görüntüler olmak üzere iki farklı veri kümesinde test edilmiştir. Sonuç olarak en iyi başarım, SURF algoritması ile elde edilmiştir.
  • Doctoral Thesis
    3 Boyutlu Vücut ve Yüz Görüntülerinden Yaş ve Cinsiyet Tahmini
    (2018) Çamalan, Seda; Şengül, Gökhan; Çamalan, Seda; Şengül, Gökhan; Çamalan, Seda; Şengül, Gökhan; Computer Engineering; Information Systems Engineering; Computer Engineering; Information Systems Engineering
    İnsanlardan elde edilen biyometrik veriler, insanlar ve çevre hakkında birçok bilgi sağlar. Bu bilgi ulaşım alanları (otobüs, vapur, demiryolu, vb), alışveriş merkezleri, kamu alanları, spor merkezleri, müzeler, süpermarketler, kütüphaneler, vb. gibi birçok alanda kullanılabilir. Birçok alanda dikkate alınan biyometrik veriler cinsiyet, ırk, boy, kilo, göz ve saç rengidir. Bu tez çalışmasında, insanların biyometrik verilerinden yaş aralığını ve cinsiyetlerini tahmin eden bir görüntü işleme tabanlı kombine sistem geliştirilmiş ve bir yazılım aracı haline getirilmiştir. Yüz görüntülerini elde etmek için standart RGB kamera kullanılırken vücut bilgilerini elde etmek için 3D kamera kullanılmaktadır. İnsanların cinsiyet ve yaşını tahmin etmek için istatistiksel örüntü tanıma algoritmaları, derin öğrenme ve yapay sinir ağı tabanlı yaklaşımlar kullanılmıştır. İstatistiki metotlar olarak, LBP ve HOG metotları, özniteliklerin elde edilmesi için yüz görüntülerine uygulanmakta, daha sonra KNN ve SVM sınıflandırıcılar, cinsiyet ve yaş tahmini için kullanılmaktadır. İnsanların yaşını tahmin etmek için yapay sinir ağı da kullanılmıştır ve istatistiksel yöntemler ile yapay sinir ağları arasındaki karşılaştırmalar yapılmıştır. Yaş aralığı tahmini için yüz görüntülerinden istatistiksel yöntemler ile en iyi doğruluk %40,1 olarak elde edilmiştir. CNN derin öğrenmelerinden elde edilen en iyi doğruluk oranı ise %59.1'dir. Yaş ve cinsiyet tahmini için 3D vücut bilgisi de kullanılmıştır. Yapay sinir ağları ile 3D vücut bilgilerinin sınıflandırılması sonucu cinsiyet tahmini başarımı oranını %99,26'ya ve yaş tahmini % 99.41'e yükseltilmiştir. Üst vücut ve alt vücut kısımlarının da insanların yaşının ve cinsiyetininin tahmini için kullanılabileceği değerlendirilmiş ve deneysel çalışmalar yapılmıştır.
  • Doctoral Thesis
    Derin Öğrenme ve Anlamsal Ağ Teknolojilerini Kullanarak Görüntü Açıklaması
    (2021) Sezen, Arda; Turhan, Çiğdem; Şengül, Gökhan
    Bu tezde, görüntü açıklama alanında görüntü tanımı çıkarımını içeren bilişsel görev için hibrit bir çözüm önerilmektedir. Sinir Ağları ile ilgili önceki çalışmalar çoğunlukla doğru etiketleri seçmeye ve/veya bir resmi tasvir etmek için ilgili etiketlerin sayısını artırmaya odaklandı. Ancak, bir resmi tanımlamak için bir dizi ilgili etiket oluşturmak ve bu resmi cümleler yoluyla tasvir etmek yapısal, sözdizimsel ve anlamsal olarak tamamen farklı olgulardır. Bu çalışmada spor alanındaki görüntülerin kontrollü bir ortamda doğal dil tanımlarını oluşturan bir çerçeve sunulmaktadır. Yaklaşımımız, görüntülerin cümle açıklamalarını oluşturmak için Yapay Zeka ve Ontolojilerden yararlanmaktadır. Geliştirilen çerçeve, derin öğrenme modellerinin ve ontoloji sınıflarının örneklerinden türetilen hizalı açıklama sonuçlarının yeni bir kombinasyonunu sunmaktadır.
  • Doctoral Thesis
    Bilgisayarlı Görme ve Makine Öğrenme'ye Dayalı Olarak Trapan Mavisi Boya Dışlama Tabanlı Işık Mikroskoplarının Otomatize Hücre Sayarına Uyarlanabilir Dönüşüm Yöntemi
    (2017) Özkan, Akın; Özkan, Akın; İşgör, Sultan Belgin; Özkan, Akın; İşgör, Sultan Belgin; İşgör, Sultan Belgin; Şengül, Gökhan; Department of Electrical & Electronics Engineering; Chemical Engineering; Department of Electrical & Electronics Engineering; Chemical Engineering
    Hücre biyolojisi deneylerinin hemen hemen hepsi, hücre çoğalmasını ve yaşayabilirliğini izlemek için düzenli olarak hücrelerin sayımını içerir. Hücrenin miktarı ve kalitesinin bilgisi, deneysel standardizasyon ve toksisite etkisi tahmini için önemli parametrelerdir. Hücreleri saymak için hemositometre tabanlı elle sayma ve otomatik hücre sayacının kullanımı gibi iki farklı yaklaşım vardır. Yöntemlerden her ikisinin de avantajları ve dezavantajları vardır. Yüksek yatırım ve operasyonel maliyet otomatik hücre sayaçlarının geniş kullanımını sınırlar. Öte yandan, hemositometreye dayalı manuel hücre sayımı, hücre sayımının güvenilirliğinin, operatörün deneyimine ve yorgunluğuna büyük ölçüde bağlı olduğu gerçeği ile çeşitli sınırlamaları vardır. . Uzun zaman gereksinimi ve insan işgücü elle işleme sürecinin iki dezavantajı olarak sayılabilir. Bu tez, görüntü işleme ve makine öğrenmeyi esas alan dönüştürme metodolojisini tanımlayarak hücre sayımı için en gelişmiş alternatif metodu (çerçeve iskeleti) önermektedir. Önerilen yöntemin temelini, eksikliklerini azaltmak için ara katman karar yazılımı ekleyerek elle sayım yöntemine hemocytomer tabanlı otomatik saymanın uyarlanmasıdır. Buna ek olarak, önerilen yöntemimizi hücre sayımı (boyasız) ve hücre yaşayabilirliği analizi (boyalı) açısından test etmek için iki yeni veri seti toplanmıştır. Bu veri kümeleri, 'biyokimyasal.atilim.edu.tr/datasets/' adresinden kâr amacı gütmeyen herkesin kullanımına sunulmaktadır ve bu da bu araştırma alanındaki gelecek çalışmalara temel teşkil edecektir. Her iki veri kümesi, iki farklı türde kanser hücresi görüntüsü, yani, beyaz renkli promiyelositik lösemi (HL60) ve kronik miyelojenik lösemi (K562) içerir. Deneysel sonuçlarımızdan yola çıkarak, yöntemimiz HL60 ve K562 kanser hücreleri için sırasıyla geri çağırma skorları açısından % 92 ve % 74'e kadar ulaşmaktadır. Deney sonuçları, önerilen yöntemin mevcut hücre sayımı yaklaşımlarına güçlü bir alternatif olabileceğini de doğrular.