Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 3
    Citation - Scopus: 2
    The Effect of N-Acetyl Cysteine on Biofilm Layers in an Experimental Model of Chronic Otitis Media
    (Pacini Editore, 2020) Callioglu, Elif Ersoy; Bercin, Sami; Basdemir, Gulcin; Kiris, Muzaffer; Tatar, Ilkan; Tuzuner, Arzu; Korkmaz, Mehmet Hakan
    Objective. The aim of this study was to investigate the efficacy of N-acetylcysteine (NAC) on biofilm layers and on the course of disease in chronic otitis media. Methods. Twenty-five rats that were induced with chronic otitis media (COM) were separated into three groups. In Group 1 (N = 18), 0.2% ciprofloxacin + 0.1% dexamethasone sodium phosphate + 0.5 mg/ml NAC solution was locally injected to the right ear of the rats; in Group 2, (N=18) 0.2% ciprofloxacin + 0.1% dexamethasone sodium phosphate was locally injected to the left ear of the rats. No treatment was applied to either ear of rats in Group 3 (N = 5). Histopathological and scanning electron microscope (SEM) evaluations were performed in all groups. Results. SEM revealed biofilm formation in all COM induced groups. No significant difference was seen between groups 1 and 2 in terms of suppuration levels, fibrosis, inner ear involvement, infection staging and biofilm formation (p > 0.05). Conclusions. In this study, while histopathological and SEM evaluation revealed no effect of 0.5 mg/ml NAC on the biofilm layer in COM-induced rats, further studies with NAC at different concentrations are still needed on different types of experimental animals.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 19
    Effects of Dexmedetomidine Administered Through Different Routes on Kidney Tissue in Rats With Spinal Cord Ischaemia-Reperfusion Injury
    (Dove Medical Press Ltd, 2022) Sengel, Necmiye; Koksal, Zeynep; Dursun, Ali Dogan; Kurtipek, Omer; Sezen, Saban Cem; Arslan, Mustafa; Kavutcu, Mustafa
    Background: Ischaemia-reperfusion (IR) injury, which can be encountered during surgical procedures involving the abdominal aorta, is a complex process that affects distant organs, such as the heart, liver, kidney, and lungs, as well as the lower extremities. In this study, we aimed to contribute to the limited literature by investigating the protective effect of dexmedetomidine, which was administered through different routes, on kidney tissue in rats with spinal cord IR injury.Methods: A total of 30 rats were randomly divided into five groups: control (C group), IR (IR group), IR-intraperitoneal dexmedetomidine (IRIPD group), IR-intrathecal dexmedetomidine (IRITD group), and IR-intravenous dexmedetomidine (IRIVD group). The spinal cord IR model was established. Dexmedetomidine was administered at doses of 100 mu g/kg intraperitoneally, 3 mu g/ kg intrathecally, and 9 mu g/kg intravenously. Histopathologic parameters in kidney tissue samples taken at the end of the reperfusion period and biochemical parameters in serum were evaluated.Results: When examined histopathologically, tubular dilatation was found to be significantly reduced in the IRIVD, IRITD, and IRIPD groups compared with the IR group (p = 0.012, all). Vascular vacuolization and hypertrophy were significantly decreased in the IRIVD, IRITD, and IRIPD groups compared with the IR group (p = 0.006, all). Tubular cell degeneration and necrosis were significantly reduced in the IRIVD, IRITD, and IRIPD groups compared with the IR group (p = 0.008, p = 0.08, and p = 0.030, respectively). Lymphocyte infiltration was significantly decreased in the IRIVD and IRITD groups compared with the IR group (p = 0.006 and p = 0.06, respectively). Conclusion: It was observed that dexmedetomidine administered by different routes improved the damage caused by IR in kidney histopathology. We think that the renoprotective effects of dexmedetomidine administered intravenously and intrathecally before IR in rats are greater.