Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    On the q-bernstein Polynomials of Piecewise Linear Functions in the Case q > 1
    (Pergamon-elsevier Science Ltd, 2013) Kaskaloglu, Kerem; Ostrovska, Sofiya
    The aim of this paper is to present new results related to the approximation of continuous functions by their q-Bernstein polynomials in the case q > 1. The first part of the paper is devoted to the behavior of the q-Bernstein polynomials of piecewise linear functions. This study naturally leads to the notion of truncated q-Bernstein polynomials introduced in the paper. The second part deals with the asymptotic estimates for the norms of the m-truncated q-Bernstein polynomials, in the case where both n and q vary. The results of the paper are illustrated by numerical examples. (C) 2012 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 71
    Citation - Scopus: 74
    On the Lupas q-analogue of the Bernstein Operator
    (Rocky Mt Math Consortium, 2006) Ostrovska, Sofiya
    Let R-n(f,q;x) : C[0, 1] -> C[0, 1] be q-analogues of the Bernstein operators defined by Lupas in 1987. If q = 1, then R-n (f, 1; x) are classical Bernstein polynomials. For q not equal 1, the operators R-n (f, q; x) are rational functions rather than polynomials. The paper deals with convergence properties of the sequence {R-n (f, q; x)}. It is proved that {R-n (f, q(n); x)} converges uniformly to f(x) for any f(x) is an element of C[0, 1] if and only if q(n) -> 1. In the case q > 0, q not equal 1 being fixed the sequence I R. (f, q; x) I converges uniformly to f(x) is an element of C[0, 1] if and only if f(x) is linear.
  • Article
    Citation - WoS: 126
    Citation - Scopus: 136
    Convergence of Generalized Bernstein Polynomials
    (Academic Press inc Elsevier Science, 2002) Il'inskii, A; Ostrovska, S
    Let f is an element of C[0, 1], q is an element of (0, 1), and B-n(f, q; x) be generalized Bernstein polynomials based on the q-integers. These polynomials were introduced by G. M. Phillips in 1997. We study convergence properties of the sequence {B-n(f, q; x)}(n=1)(infinity). It is shown that in general these properties are essentially different from those in the classical case q = 1. (C) 2002 Elsevier Science (USA).
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    The Norm Estimates for The q-bernstein Operator in The Case q > 1
    (Amer Mathematical Soc, 2010) Wang, Heping; Ostrovska, Sofiya
    The q-Bernstein basis with 0 < q < 1 emerges as an extension of the Bernstein basis corresponding to a stochastic process generalizing Bernoulli trials forming a totally positive system on [0, 1]. In the case q > 1, the behavior of the q-Bernstein basic polynomials on [0, 1] combines the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present norm estimates in C[0, 1] for the q-Bernstein basic polynomials and the q-Bernstein operator B-n,B-q in the case q > 1. While for 0 < q <= 1, parallel to B-n,B-q parallel to = 1 for all n is an element of N, in the case q > 1, the norm parallel to B-n,B-q parallel to increases rather rapidly as n -> infinity. We prove here that parallel to B-n,B-q parallel to similar to C(q)q(n(n-1)/2)/n, n -> infinity with C-q = 2 (q(-2); q(-2))(infinity)/e. Such a fast growth of norms provides an explanation for the unpredictable behavior of q-Bernstein polynomials (q > 1) with respect to convergence.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    The Convergence of q-bernstein Polynomials (0 < q < 1) and Limit q-bernstein Operators in Complex Domains
    (Rocky Mt Math Consortium, 2009) Ostrovska, Sofiya; Wang, Heping
    Due to the fact that the convergence properties of q-Bernstein polynomials are not similar to those in the classical case q = 1, their study has become an area of intensive research with a wide scope of open problems and unexpected results. The present paper is focused on the convergence of q-Bernstein polynomials, 0 < q < 1, and related linear operators in complex domains. An analogue of the classical result on the simultaneous approximation is presented. The approximation of analytic functions With the help of the limit q-Bernstein operator is studied.