Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Proton Therapy for Mandibula Plate Phantom
    (Mdpi, 2021) Senirkentli, Guler Burcu; Ekinci, Fatih; Bostanci, Erkan; Guzel, Mehmet Serdar; Dagli, Ozlem; Karim, Ahmad M.; Mishra, Alok
    Purpose: In this study, the required dose rates for optimal treatment of tumoral tissues when using proton therapy in the treatment of defective tumours seen in mandibles has been calculated. We aimed to protect the surrounding soft and hard tissues from unnecessary radiation as well as to prevent complications of radiation. Bragg curves of therapeutic energized protons for two different mandible (molar and premolar) plate phantoms were computed and compared with similar calculations in the literature. The results were found to be within acceptable deviation values. Methods: In this study, mandibular tooth plate phantoms were modelled for the molar and premolar areas and then a Monte Carlo simulation was used to calculate the Bragg curve, lateral straggle/range and recoil values of protons remaining in the therapeutic energy ranges. The mass and atomic densities of all the jawbone layers were selected and the effect of layer type and thickness on the Bragg curve, lateral straggle/range and the recoil were investigated. As protons move through different layers of density, lateral straggle and increases in the range were observed. A range of energies was used for the treatment of tumours at different depths in the mandible phantom. Results: Simulations revealed that as the cortical bone thickness increased, Bragg peak position decreased between 0.47-3.3%. An increase in the number of layers results in a decrease in the Bragg peak position. Finally, as the proton energy increased, the amplitude of the second peak and its effect on Bragg peak position decreased. Conclusion: These findings should guide the selection of appropriate energy levels in the treatment of tumour structures without damaging surrounding tissues.
  • Editorial
    Editorial: Cells, Biomaterials, and Biophysical Stimuli for Bone, Cartilage, and Muscle Regeneration
    (Frontiers Media Sa, 2023) Fassina, Lorenzo; Bloise, Nora; Ramalingam, Murugan; Cusella De Angelis, Maria Gabriella; Visai, Livia
    [No Abstract Available]
  • Review
    Citation - WoS: 13
    Citation - Scopus: 14
    Molecularly Imprinted Polymer-Based Sensors for the Detection of Skeletal- and Cardiac-Muscle Analytes
    (Mdpi, 2023) Ostrovidov, Serge; Ramalingam, Murugan; Bae, Hojae; Orive, Gorka; Fujie, Toshinori; Hori, Takeshi; Kaji, Hirokazu
    Molecularly imprinted polymers (MIPs) are synthetic polymers with specific binding sites that present high affinity and spatial and chemical complementarities to a targeted analyte. They mimic the molecular recognition seen naturally in the antibody/antigen complementarity. Because of their specificity, MIPs can be included in sensors as a recognition element coupled to a transducer part that converts the interaction of MIP/analyte into a quantifiable signal. Such sensors have important applications in the biomedical field in diagnosis and drug discovery, and are a necessary complement of tissue engineering for analyzing the functionalities of the engineered tissues. Therefore, in this review, we provide an overview of MIP sensors that have been used for the detection of skeletal- and cardiac-muscle-related analytes. We organized this review by targeted analytes in alphabetical order. Thus, after an introduction to the fabrication of MIPs, we highlight different types of MIP sensors with an emphasis on recent works and show their great diversity, their fabrication, their linear range for a given analyte, their limit of detection (LOD), specificity, and reproducibility. We conclude the review with future developments and perspectives.
  • Review
    Citation - WoS: 35
    Citation - Scopus: 37
    Bioprinting and biomaterials for dental alveolar tissue regeneration
    (Frontiers Media Sa, 2023) Ostrovidov, Serge; Ramalingam, Murugan; Bae, Hojae; Orive, Gorka; Fujie, Toshinori; Shi, Xuetao; Kaji, Hirokazu
    Three dimensional (3D) bioprinting is a powerful tool, that was recently applied to tissue engineering. This technique allows the precise deposition of cells encapsulated in supportive bioinks to fabricate complex scaffolds, which are used to repair targeted tissues. Here, we review the recent developments in the application of 3D bioprinting to dental tissue engineering. These tissues, including teeth, periodontal ligament, alveolar bones, and dental pulp, present cell types and mechanical properties with great heterogeneity, which is challenging to reproduce in vitro. After highlighting the different bioprinting methods used in regenerative dentistry, we reviewed the great variety of bioink formulations and their effects on cells, which have been established to support the development of these tissues. We discussed the different advances achieved in the fabrication of each dental tissue to provide an overview of the current state of the methods. We conclude with the remaining challenges and future needs.
  • Editorial
    Editorial: Biofabricated Materials for Tissue Engineering
    (Frontiers Media Sa, 2024) Sasmazel, Hilal Turkoglu; Gunduz, Oguzhan; Ramalingam, Murugan; Ulag, Songul
    [No Abstract Available]