Search Results

Now showing 1 - 2 of 2
  • Conference Object
    Citation - Scopus: 2
    Design Optimization of Cassegrain Telescope for Remote Explosive Trace Detection
    (Spie-int Soc Optical Engineering, 2017) Bhavsar, Kaushalkumar; Eseller, K. E.; Prabhu, Radhakrishna
    The past three years have seen a global increase in explosive-based terror attacks. The widespread use of improvised explosives and anti-personnel landmines have caused thousands of civilian casualties across the world. Current scenario of globalized civilization threat from terror drives the need to improve the performance and capabilities of standoff explosive trace detection devices to be able to anticipate the threat from a safe distance to prevent explosions and save human lives. In recent years, laser-induced breakdown spectroscopy (LIBS) is an emerging approach for material or elemental investigations. All the principle elements on the surface are detectable in a single measurement using LIBS and hence, a standoff LIBS based method has been used to remotely detect explosive traces from several to tens of metres distance. The most important component of LIBS based standoff explosive trace detection system is the telescope which enables remote identification of chemical constituents of the explosives. However, in a compact LIBS system where Cassegrain telescope serves the purpose of laser beam delivery and light collection, need a design optimization of the telescope system. This paper reports design optimization of a Cassegrain telescope to detect explosives remotely for LIBS system. A design optimization of Schmidt corrector plate was carried out for Nd:YAG laser. Effect of different design parameters was investigated to eliminate spherical aberration in the system. Effect of different laser wavelengths on the Schmidt corrector design was also investigated for the standoff LIBS system.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithms
    (Mdpi, 2023) Yilmaz, Vadi Su; Yılmaz, Vadi Su; Eseller, Kemal Efe; Aslan, Ozgur; Aslan, Özgür; Bayraktar, Emin; Eseller, Kemal Efe; Yılmaz, Vadi Su; Aslan, Özgür; Eseller, Kemal Efe; Electrical-Electronics Engineering; Department of Electrical & Electronics Engineering; Mechanical Engineering; Electrical-Electronics Engineering; Mechanical Engineering; Department of Electrical & Electronics Engineering
    This paper aims toward the successful detection of harmful materials in a substance by integrating machine learning (ML) into laser-induced breakdown spectroscopy (LIBS). LIBS is used to distinguish five different synthetic polymers where eight different heavy material contents are also detected by LIBS. Each material intensity-wavelength graph is obtained and the dataset is constructed for classification by a machine learning (ML) algorithm. Seven popular machine learning algorithms are applied to the dataset which include eight different substances with their wavelength-intensity value. Machine learning algorithms are used to train the dataset, results are discussed and which classification algorithm is appropriate for this dataset is determined.