Search Results

Now showing 1 - 2 of 2
  • Article
    On Quasi-Weibull Distribution
    (Univ Miskolc inst Math, 2025) Ostrovska, Sofiya; Turan, Mehmet
    Exponential distribution together with a variety of its transformations is permanently used both in probability theory and related fields. The most popular one is the power transformation yielding the Weibull distribution. In this paper, the power distribution of exponential random variable is supplemented by a logarithmic factor leading to a new distribution called quasi-Weibull. This is a three-parameter distribution, where one parameter is inherited from the underlying exponential distribution, and the others originate from the transformation. The properties of the quasi-Weibull distribution are studied. Specifically, the impact of the parameters on the analyticity of characteristic function, the existence of the moment generating function, the moment-determinacy/indeterminacy and the behaviour of the hazard function are investigated.
  • Article
    Dvoretzky-Type Theorem for Locally Finite Subsets of a Hilbert Space
    (Annales Inst Fourier, 2025) Catrina, Florin; Ostrovska, Sofiya; Ostrovskii, Mikhail I.
    The main result of the paper: Given any epsilon > 0, every locally finite subset of l(2) admits a (1 + epsilon)-bilipschitz embedding into an arbitrary infinite-dimensional Banach space. The result is based on two results which are of independent interest: (1) A direct sum of two finite-dimensional Euclidean spaces contains a sub-sum of a controlled dimension which is epsilon-close to a direct sum with respect to a 1-unconditional basis in a two-dimensional space. (2) For any finite-dimensional Banach space Y and its direct sum X with itself with respect to a 1-unconditional basis in a two-dimensional space, there exists a (1 + epsilon)-bilipschitz embedding of Y into X which on a small ball coincides with the identity map onto the first summand and on the complement of a large ball coincides with the identity map onto the second summand.