Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    A Generalized Class of Correlated Run Shock Models
    (de Gruyter Poland Sp Zoo, 2018) Yalcin, Femin; Eryilmaz, Serkan; Bozbulut, Ali Riza
    In this paper, a generalized class of run shock models associated with a bivariate sequence {(X-i, Y-i)}(i >= 1) of correlated random variables is defined and studied. For a system that is subject to shocks of random magnitudes X-1, X-2, ... over time, let the random variables Y-1, Y-2, ... denote times between arrivals of successive shocks. The lifetime of the system under this class is defined through a compound random variable T = Sigma(N)(t=1) Y-t, where N is a stopping time for the sequence {Xi}(i >= 1) and represents the number of shocks that causes failure of the system. Another random variable of interest is the maximum shock size up to N, i.e. M = max {X-i, 1 <= i <= N}Distributions of T and M are investigated when N has a phase-type distribution.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 12
    q-geometric and q-binomial Distributions of Order k
    (Elsevier Science Bv, 2014) Yalcin, Femin; Eryilmaz, Serkan
    In this paper, we generalize geometric and binomial distributions of order k to q-geometric and q-binomial distributions of order k using Bernoulli trials with a geometrically varying success probability. In particular, we derive expressions for the probability mass functions of these distributions. For q = 1, these distributions reduce to geometric and binomial distributions of order k which have been extensively studied in the literature. (C) 2014 Elsevier B.V. All rights reserved.