Search Results

Now showing 1 - 2 of 2
  • Article
    Protective Role of Bromelain’s Antioxidant and Anti-Inflammatory Effects in Experimental Lower Limb Ischemia-Reperfusion Injury
    (Nature Portfolio, 2025) Sezen, Saban Cem; Demirtas, Huseyin; Yildirim, Alperen Kutay; Ozer, Abdullah; Dursun, Ali Dogan; Kucuk, Aysegul; Arslan, Mustafa
    Ischemia-reperfusion (IR) injury is a multifaceted pathological process characterized by excessive oxidative stress and inflammatory responses upon restoration of blood flow. Bromelain, a proteolytic enzyme complex derived from pineapple, exhibits robust antioxidant and anti-inflammatory activities. This study aimed to evaluate the protective effects and underlying mechanisms of bromelain on oxidative stress and inflammation in an experimental rat model of lower limb ischemia-reperfusion injury. Twenty-four male Wistar Albino rats were randomly allocated into four groups: Sham-operated control (SHAM), Bromelain-only (BR), Ischemia-Reperfusion (IR), and Ischemia-Reperfusion with Bromelain treatment (IR + BR). Bromelain (40 mg/kg) was administered intraperitoneally before ischemia induction. The IR model involved 45 min of infrarenal abdominal aorta occlusion followed by 120 min of reperfusion. Oxidative biomarkers (total antioxidant status [TAS], total oxidant status [TOS], oxidative stress index [OSI]) and histopathological parameters (muscle atrophy, degeneration, leukocyte infiltration, internalization of nuclei, fragmentation, and hyalinization) were analyzed. Significant increases in muscle degeneration, leukocyte infiltration, nuclear internalization, fragmentation, and elevated oxidative stress biomarkers (increased TOS and OSI, decreased TAS) were observed in the IR group compared to controls. Bromelain treatment (IR + BR) significantly ameliorated these effects, reducing muscle tissue damage, inflammation, and oxidative imbalance compared to the untreated IR group. Bromelain effectively mitigates lower limb ischemia-reperfusion injury by reducing oxidative stress, restoring antioxidant capacity, and suppressing inflammatory responses. These protective effects suggest that bromelain holds potential as a therapeutic agent for managing oxidative and inflammatory damages associated with IR conditions, warranting further clinical investigation.
  • Article
    Bosentan Reduces Myocardial Ischemia-Reperfusion Injury in Rats
    (2025) Küçük, Ayşegül; Dursun, Alı Dogan; Arslan, Mustafa; Özer, Abdullah; Demirtas, Huseyin; Gulcan, Mehmet Burak; Yığman, Zeynep
    Objectives: This study aimed to investigate the cardioprotective effects of bosentan, an endothelin receptor antagonist, against myocardial ischemia-reperfusion injury (MIRI) in rats. Materials and Methods: Twenty-four adult Wistar-Albino rats were randomly divided into four groups: control, bosentan only, myocardial ischemia-reperfusion (MIR), and MIR-bosentan (MIR-B). Ischemia was induced by ligation of the left anterior descending coronary artery for 30 minutes, followed by 90 minutes of reperfusion. Bosentan was administered intraperitoneally at 30 mg/kg during ischemia in the MIR-B group. Histopathological evaluation assessed neutrophil infiltration, cardiomyocyte damage, tissue edema, and hemorrhage, while biochemical analyses measured total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and paraoxonase-1 (PON-1) activity in myocardial tissue. Results: The MIR group showed significantly increased histopathological injury scores, including neutrophil infiltration, cardiomyocyte damage, edema, and hemorrhage, compared to control and bosentan-only groups (p<0.001). Bosentan treatment significantly reduced these injury scores in the MIR-B group compared to the MIR group (p<0.05). Biochemically, the MIR group exhibited elevated TOS and OSI levels and reduced TAS and PON-1 activity, indicating oxidative stress. Bosentan administration significantly improved these parameters by lowering TOS and OSI levels, and by increasing TAS and PON-1 activity compared to the MIR group (p<0.05). Conclusion: In conclusion, bosentan demonstrated significant protective effects against MIRI by attenuating histological damage and oxidative stress in rat myocardium. These findings suggest that endothelin receptor antagonism with bosentan may offer a promising therapeutic approach to reduce myocardial injury following ischemia-reperfusion events such as those occurring during coronary artery bypass grafting. Further studies are needed to explore its clinical potential.