3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 53Investigation of Emerging Trends in the E-Learning Field Using Latent Dirichlet Allocation(Athabasca Univ Press, 2021) Gurcan, Fatih; Ozyurt, Ozcan; Cagiltay, Nergiz ErcilE-learning studies are becoming very important today as they provide alternatives and support to all types of teaching and learning programs. The effect of the COVID-19 pandemic on educational systems has further increased the significance of e-learning. Accordingly, gaining a full understanding of the general topics and trends in e-learning studies is critical for a deeper comprehension of the field. There are many studies that provide such a picture of the e-learning field, but the limitation is that they do not examine the field as a whole. This study aimed to investigate the emerging trends in the e-learning field by implementing a topic modeling analysis based on latent Dirichlet allocation (LDA) on 41,925 peer-reviewed journal articles published between 2000 and 2019. The analysis revealed 16 topics reflecting emerging trends and developments in the e-learning field. Among these, the topics "MOOC," "learning assessment," and "elearning systems" were found to be key topics in the field, with a consistently high volume. In addition, the topics of "learning algorithms," "learning factors," and "adaptive learning" were observed to have the highest overall acceleration, with the first two identified as having a higher acceleration in recent years. Going by these results, it is concluded that the next decade of e-learning studies will focus on learning factors and algorithms, which will possibly create a baseline for more individualized and adaptive mobile platforms. In other words, after a certain maturity level is reached by better understanding the learning process through these identified learning factors and algorithms, the next generation of e-learning systems will be built on individualized and adaptive learning environments. These insights could be useful for e-learning communities to improve their research efforts and their applications in the field accordingly.Article Citation - WoS: 20Citation - Scopus: 28Bug Severity Assessment in Cross Project Context and Identifying Training Candidates(World Scientific Publ Co Pte Ltd, 2017) Singh, V. B.; Misra, Sanjay; Sharma, MeeraThe automatic bug severity prediction will be useful in prioritising the development efforts, allocating resources and bug fixer. It needs historical data on which classifiers can be trained. In the absence of such historical data cross project prediction provides a good solution. In this paper, our objective is to automate the bug severity prediction by using a bug metric summary and to identify best training candidates in cross project context. The text mining technique has been used to extract the summary terms and trained the classifiers using these terms. About 63 training candidates have been designed by combining seven datasets of Eclipse projects to develop the severity prediction models. To deal with the imbalance bug data problem, we employed two approaches of ensemble by using two operators available in RapidMiner: Vote and Bagging. Results show that k-Nearest Neighbour (k-NN) performance is better than the Support Vector Machine (SVM) performance. Naive Bayes f-measure performance is poor, i.e. below 34.25%. In case of k-NN, developing training candidates by combining more than one training datasets helps in improving the performances (f-measure and accuracy). The two ensemble approaches have improved the f-measure performance up to 5% and 10% respectively for the severity levels having less number of bug reports in comparison of major severity level. We have further motivated the paper with a cross project bug severity prediction between Eclipse and Mozilla products. Results show that Mozilla products can be used to build reliable prediction models for Eclipse products and vice versa in case of SVM and k-NN classifiers.Article Citation - WoS: 31Citation - Scopus: 40Research Trends on Distance Learning: a Text Mining-Based Literature Review From 2008 To 2018(Routledge Journals, Taylor & Francis Ltd, 2023) Gurcan, Fatih; Cagiltay, Nergiz ErcilToday's dynamic distance learning environments offer a flexible, comfortable, and lifelong learning experience, independent of space and time. In this way, it also supports and develops existing traditional training programs. The increasing importance of knowledge, skills and learning in today's technological life cycle has led to an increase and diversification of research and applications in distance learning. Accordingly, distance learning literature has a rich content supported by a multidisciplinary background. From this point of view, it is crucial to perceive the research landscape reflecting the general themes and trends studied in the field of distance learning. This study aims at revealing the distance learning research themes and trends by analyzing the 27,735 articles of journal conducted in the last decade. The methodology of the study is based on semantic content analysis implemented by N-gram-based text categorization technique. As a result, 10 main themes are discovered, namely, "System establishment", "Media", "Assessment", "Method", "Content", "Education levels", "Learner", "Research methods", "Interaction-Communication", and "Resource-Material-Tool". In this context, the findings of the study are expected to provide significant insights to guide prospective research and practice in the field and to develop continuous improvements and standards for distance education communities.

