9 results
Search Results
Now showing 1 - 9 of 9
Article Citation - WoS: 2Citation - Scopus: 2Performance of Ge-Sandwiched Gase Layers(Springer, 2018) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Abdallah, Maisam M. A.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringIn the current work, we report the effect of sandwiching Ge between two stacked layers of GaSe. The GaSe and Ge-sandwiched GaSe were subjected to x-ray diffraction, optical spectrophotometry and impedance spectroscopy measurement and analysis. The presence of a Ge layer between two layers of GaSe was observed to cause uniform deformation and increase the absorption of light by GaSe. The response of the dielectric constant to incident light was also significantly enhanced by Ge sandwiching. In addition, Drude-Lorentz modeling of the imaginary part of the dielectric constant revealed that the layer of Ge layer between GaSe layers increased the drift mobility from 30.76 cm(2)/Vs to 52.49 cm(2)/Vs. It also enhanced the plasmon frequency without altering the free carrier density. Moreover, Ge improved the band filtering features of GaSe. In particular, it enhanced the sensitivity of the impedance response to the incident signal and increased the return loss factor of GaSe when it was used as a high band pass filter.Article Citation - WoS: 6Citation - Scopus: 6Design and characterization of (Al, C)/p-Ge/p-BN/C isotype resonant electronic devices(Wiley-v C H verlag Gmbh, 2015) Al Garni, S. E.; Qasrawi, A. F.In this work, a Ge/BN isotype electronic device that works as a selective microwave bandstop filter is designed and characterized. The interface is designed using a 50-m thick p-type BN on a 0.2-m thick p-type germanium thin film. The modeling of current-voltage characteristics of the Al/Ge/BN/C channel of the device revealed that the current is dominated by thermionic emission and by the tunneling of charged particles through energy barriers. The evaluation of the conduction parameters reflected a resonant circuit with a peak-to-valley current ratio of (PVCR) of 63 at a peak (V-p) and valley (V-v) voltages of 1.84 and 2.30V, respectively. The ac signal analysis of the Al/Ge/BN/C channel that was carried out in the frequency range of 1.0-3.0GHz displayed a bandstop filter properties with notch frequency (f(n)) of 2.04GHz and quality factor (Q) of 102. The replacement of the Al electrode by C through the C/Ge/BN/C channel caused the disappearance of the PVCR and shifted f(n) and Q to 2.70GHz and 100, respectively. The features of the Ge/BN device are promising as they indicate the applicability of these sensors in communication technology.Article Citation - WoS: 2Citation - Scopus: 2Dielectric and Optoelectronic Properties of Inse/Cds Heterojunctions(Springer, 2018) Abusaa, M.; Qasrawi, A. F.; Shehada, Sufyan R.The effect of an InSe substrate on the structural, optical and dielectric properties of CdS/CdSe heterojunctions prepared by physical vapor deposition technique under vacuum pressure of 10(-8) bar are reported. The structural analysis carried out by x-ray diffraction revealed a strained type of growth of the CdS/CdSe heterojunction onto the InSe along the axis of the hexagonal lattice. The lattice mismatches and strained nature of the heterojunctions associated with the InSe participation causes a quantum confinement that results in a red shift in the energy band gap, enhanced near infrared (IR) light absorbability, and valence band offsets of 0.62eV and 0.53eV for the InSe/CdS and CdS/CdSe interfaces, respectively. In addition, a pronounced enhancement in the real part of the dielectric constant by 2.5 times is observed at 1.25eV. Furthermore, the Durde-Lorentz modeling of the optical conductivity of the CdS/CdSe and InSe/CdS/CdSe reveals significant increases in the drift mobility values from 43.8cm(2)/Vs at the CdS/CdSe interface to 100.0cm(2/)Vs upon replacement of glass by an amorphous InSe substrate. The other optical conduction parameters including the free carrier scattering time at the femtosecond level, the plasmon frequency and the free carrier density are also improved accordingly. The photocurrent illumination intensity dependence for the studied system showed that the presence of InSe increases the photocurrent values and changes the recombination mechanism from sublinear at the surface to trap-assisted recombination. The smart feature of the InSe/CdS/CdSe system is that the structurally controlled quantum confinement results in having mobile photocarriers arising from the enhanced absorbability and large dielectric response in the IR region.Article Citation - WoS: 5Citation - Scopus: 5Structural and Electrical Characterizations of the as Grown and Annealed Au/Mοo3< Bandpass Filters(Wiley, 2019) Khanfar, Hazem K.; Qasrawi, Atef; Daraghmeh, Masa; Abusaa, MuayadIn this work, the structural, morphology, and electrical properties of two 500 nm thick molybdenum trioxide layers that are sandwiched with indium slab of thickness of 200 nm (MoO3/In/MoO3 [MIM]) to form a bandpass filter are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and impedance spectroscopy techniques, respectively. The MIM films which coated onto Au thin film substrates by the thermal evaporation technique under vacuum pressure of 10(-5) mbar was post annealed at 250 degrees C in air atmosphere. While the XRD analysis revealed polycrystalline hexagonal lattice structure of the Au/MLM samples, the SEM and EDS analysis displayed grains of sizes of 350 nm and stoichiometric structure of MoO3. Electrically, indium layer which caused n-type conduction with donor level of 299 meV, forced the material to exhibit negative capacitance (NC) effect at high frequencies (above 1.1 GHz). The impedance spectroscopy which was recorded in the frequency domain of 0.01 to 1.80 GHz, also revealed low pass and high pass filters characteristics in the low and high frequency domains, respectively. The annealing of the Au/MIM samples, decreased the crystallite and grain sizes and increased the microstrain, the defect density and the stacking faults. Small amount of excess oxygen and some indium deficiency are observed upon annealing. In addition, the annealing shifted the donor level closer to the bottom of the conduction band and inverted the NC effect from high to low frequency regions. The study indicates the applicability of the Au/MIM/C structures as microwave cavities and parasitic capacitance cancellers in electronic circuits.Article Citation - WoS: 12Citation - Scopus: 14Coating of Titanium Implants With Boron Nitride by Rf-Magnetron Sputtering(indian Acad Sciences, 2016) Gokmenoglu, Ceren; Ozmeric, Nurdan; Cakal, Gaye; Dokmetas, Nihan; Ergene, Cansu; Kaftanoglu, BilginSurface modification is necessary for titanium implants since it is unable to induce bone apposition. The beneficial effects of boron on bone formation, composition and physical properties make it suitable as a coating material. In the present study, surface properties of boron nitride (BN) coating on titanium implants were evaluated. Twenty-four implants and 12 abutments were coated with BN by RF-magnetron sputtering system. ATR-FTIR measurements were conducted to assess surface chemistry and morphology of BN-coated implants. Adhesion tests were performed by CSM nanoscratch test device to determine adhesion of BN to titanium surface. Surface profilometry and atomic force microscopy (AFM) was used to evaluate surface roughness. Mean roughness values were calculated. Contact angle measurements were done for evaluation of wettability. Surface characterization of coated implants was repeated after RF power of the system was increased and voltage values were changed to evaluate if these settings have an impact on coating quality. Three different voltage values were used for this purpose. Hexagonal-BN was determined in FTIR spectra. RF-coating technique provided adequate adherence of BN coatings to the titanium surface. A uniform BN coating layer was formed on the titanium implants with no deformation on the titanium surface. Similar roughness values were maintained after BN coating procedure. Before coating, the contact angles of the implants were in between 63(ay) and 79(ay), whereas BN coated implants' contact angles ranged between 46(ay) and 67(ay). BN-coated implant surfaces still have hydrophilic characteristics. The change in voltage values seemed to affect the surface coating characteristics. Especially, the phase of the BN coating was different when different voltages were used. According to our results, BN coating can be sufficiently performed on pretreated implant surfaces and the characteristics of BN coated surfaces can be changed with the change in parameters of RF-magnetron sputtering system.Article Citation - WoS: 5Citation - Scopus: 4Properties of Se/Inse Thin-Film Interface(Springer, 2016) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Kayed, T. S.; Elsayed, Khaled A.; Kayed, Tarek Said; Qasrawı, Atef Fayez Hasan; Kayed, Tarek Said; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringSe, InSe, and Se/InSe thin films have been prepared by the physical vapor deposition technique at pressure of similar to 10(-5) torr. The structural, optical, and electrical properties of the films and Se/InSe interface were investigated by means of x-ray diffraction (XRD) analysis, ultraviolet-visible spectroscopy, and current-voltage (I-V) characteristics. XRD analysis indicated that the prepared InSe films were amorphous while the Se films were polycrystalline having hexagonal structure with unit cell parameters of a = 4.3544 and c = 4.9494 . Spectral reflectance and transmittance analysis showed that both Se and InSe films exhibited indirect allowed transitions with energy bandgaps of 1.92 eV and 1.34 eV, respectively. The Se/InSe interface exhibited two energy bandgaps of 0.98 eV and 1.73 eV above and below 2.2 eV, respectively. Dielectric constant values were also calculated from reflectance spectra for the three layers in the frequency range of 500 THz to 272 THz. The dielectric constant exhibited a promising feature suggesting use of the Se/InSe interface as an optical resonator. Moreover, the Au/Se/InSe/Ag heterojunction showed some rectifying properties that could be used in standard optoelectronic devices. The ideality factor and height of the energy barrier to charge carrier motion in this device were found to be 1.72 and 0.66 eV, respectively.Article Citation - WoS: 3Citation - Scopus: 4Structural and Optical Properties of the Zns/Gase Heterojunctions(Iop Publishing Ltd, 2017) Alharbi, S. R.; Abdallaha, Maisam M. A.; Qasrawi, A. F.In the current work, the ZnS/GaSe thin film heterojunction interfaces are experimentally designed and characterized by means of x-ray diffraction, scanning electron microscopy, energy dispersion spectroscopy and optical spectroscopy techniques. The heterojunction is observed to exhibit physical nature of formation with an induced crystallization of GaSe by the ZnS substrate. For this heterojunction, the hot probe technique suggested the formation of a p-ZnS/n-GaSe interface. In addition, the designed energy band diagram of the heterojunction which was actualized with the help of the optical spectrophotometric data analysis revealed a respective conduction and valence band offsets of 0.67 and 0.73 eV. On the other hand, the dielectric dispersion analysis and modeling which was studied in the frequency range of 270-1000 THz, have shown that the interfacing of the ZnS with GaSe strongly affects the properties of ZnS as it reduces the number of free carriers, shifts down the plasmon frequency, increases the charge carrier scattering time and results in higher values of drift mobility at Terahertz frequencies.Article Citation - WoS: 8Citation - Scopus: 7Negative Capacitance Effect in Ag/-in2< Dual Band Stop Filters(Springer, 2019) Khanfar, Hazem K.; Qasrawi, A. F.; Shehada, Sufyan R.In the current study, a 1.5m thick three channel microwave band filter is designed and characterized. The thin film device which was constructed from the indium selenide, cadmium sulfide and cadmium selenide stacked dielectric materials sandwiched between silver and carbon films is studied by means of x-ray diffraction, energy dispersive x-ray analysis and impedance spectroscopy techniques. It was observed that the Ag thin film substrate induced the formation of the hexagonal -In2Se3 phase of indium selenide. The x-ray analysis has also shown that the deposition of hexagonal CdS over Ag/-In2Se3 and that of hexagonal CdSe over -In2Se3/CdS under vacuum pressure of 10(-8) bar is of a highly strained and mismatched physical nature. The impedance spectroscopy analysis in the frequency domain of 0.10-1.80GHz has shown that; while the Ag/-In2Se3/C channel exhibit negative capacitance (NC) effects in the frequency domain of 0.10-1.40GHz, the Ag/-In2Se3/CdS/C and the Ag/-In2Se3/CdS/CdSe/C channels displayed a NC feature in the domains of 1.24-1.40GHz and 1.10-1.56GHz, respectively. The fitting of the capacitance spectra in accordance with the modified Ershov model allowed determining the NC and band filtering parameters. It was also observed that, although the Ag/-In2Se3/C channel behaves as a high frequency low pass filter, the second and third channels displayed band stop filter features with notch frequencies of 1.38GHz and 1.49GHz, respectively. The features of the device nominate it for use as a parasitic capacitance canceller and as a three channels microwave filter.Article Citation - WoS: 13Citation - Scopus: 13Surface Characterization and Corrosion Resistance of Boron Nitride Coated Titanium Dental Implants(Maik Nauka/interperiodica/springer, 2019) Cakal, G. O.; Gokmenoglu, C.; Kaftanoglu, B.; Ozmeric, N.Surface modifications of dental implants are of vital importance to enhance osseointegration and improve their corrosion resistance. This study characterized the surface properties of boron nitride (BN) coated titanium implants and their corrosion behaviors. Pretreated implant surfaces were coated successfully with BN by RF-magnetron sputtering system. Surface morphology and elemental composition of uncoated and BN-coated implant surfaces were examined by using X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) coupled with energy dispersive X-ray spectrometer (EDS). The corrosion tests were performed by use of artificial saliva. The tri-dimensional topography of the uncoated sandblasted, large-grit, acid-etched (SLA) implant surface showing sponge-like characteristics, revealed characteristic differences at micro level after BN-coating. It had more holes and peaks in addition to the sponge-like characteristics which further improved its surface microroughness. Boron-to-nitrogen ratio of the coated surface was obtained in the range of 0.8-1.6. The BN-coated SLA implant had no weight loss in the corrosion test. However, the surface characteristics of implants before coating had an impact on corrosion behavior of other implant types. The results demonstrated that titanium implants can be coated with BN successfully and this coating improves the surface properties of dental implants.

