Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 6
    Assessment of Criticality and Burn Up Behavior of Candu Reactors With Nuclear Waste Trans Uranium Fuel
    (Pergamon-elsevier Science Ltd, 2012) Sahin, Sumer; Ahmed, Rizwan; Khan, Mohammad Javed
    Large quantities of nuclear waste plutonium and minor actinides (MAs) have been accumulated in the civilian light water reactors (LWRs) and CANDU reactors. These trans uranium (TRU) elements are all fissionable, and thus can be considered as fissile fuel materials in form of mixed fuel with thorium or naturanium in the latter. CANDU fuel compacts made of tristructural-isotropic (TRISO) type pellets would withstand very high burn ups without fuel change. As carbide fuels allow higher fissile material density than oxide fuels, following fuel compositions have been selected for investigations: (1) 90% nat-UC + 10% TRUC, (2) 70% nat-UC + 30% TRUC and (3) 50% nat-UC + 50% TRUC. Higher TRUC charge leads to longer power plant operation periods without fuel change. The behavior of the criticality k(infinity) and the burn up values of the reactor have been pursued by full power operation for > similar to 12 years. For these selected fuel compositions, the reactor criticality starts by k(infinity) = 1.4443, 1.4872 and 1.5238, where corresponding reactor operation times and burn up values have been calculated as 2.8 years, 8 years and 12.5 years, and 62, 430 MW.D/MT, 176,000 and 280,000 MW.D/MT, with fuel consumption rates of similar to 16, 5.68 and 3.57 g/MW.D respectively. These high burn ups would reduce the nuclear waste mass per unit energy output drastically. The study has show clearly that TRU in form of TRISO fuel pellets will provide sufficient criticality as well as reasonable burn up for CANDU reactors in order to justify their consideration as alternative fuel. (c) 2012 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 15
    Investigation of a Gas Turbine-Modular Helium Reactor Using Reactor Grade Plutonium With 232th and 238u
    (Pergamon-elsevier Science Ltd, 2016) Sahin, Sumer; Erol, Ozgur; Sahin, Haci Mehmet
    Utilization of natural uranium (nat-U) and thorium as fertile fuels has been investigated by in a Gas Turbine - Modular Helium Reactor (GTMHR) using reactor grade plutonium as driver fuel. A neutronic analysis for the full core reactor was performed by using MCNP5 with ENDF/B-VI cross-section library. Different mixture ratios were tested in order to find the appropriate mixture ratio of fertile and fissile fuel particles that gives a comparable k(eff) value of the reference uranium fuel. Time dependent calculations were performed by using MONTEBURN2.0 with ORIGEN2.2 for each selected mixture. Different parameters (operation time, burnup value, fissile isotope change, etc.) were subject of performance comparison. The operation time and burnup values were close to each other with nat-U and thorium, namely 3205 days and 176 GWd/MTU for the former and 3175 days 181 GWd/MTU for the latter fertile fuel. In addition, the fissile isotope amount changed from initially 6940.1 kg-4579.2 kg at the end of its operation time for nat-U. These values were obtained for thorium as 6603.3 kg-4250.2 kg, respectively. (C) 2016 Elsevier Ltd. All rights reserved.