Search Results

Now showing 1 - 2 of 2
  • Article
    Enhancing Machining Efficiency and Sustainability of Ti-6Al-4V Through Minimum Quantity Lubrication With Ester-Based Oils
    (Taylor & Francis Ltd, 2025) Namlu, Ramazan Hakki; Kavut, Kuebra; Tom, Hanife Gulen
    Ti-6Al-4 V is known as difficult-to-cut due to its low thermal conductivity and high chemical reactivity. While cutting fluids aid lubrication and reduce friction, Conventional Cutting Fluids (CCF) have high consumption, limited efficiency gains and negative environmental and health effects. Therefore, there is an ongoing search for more sustainable alternatives to CCF that do not adversely affect machining performance. Minimum Quantity Lubrication (MQL), which delivers compressed air - oil aerosol, has emerged as a promising solution by drastically reducing fluid use and associated risks. Selecting the right MQL fluid is key to optimising machining performance. This study evaluates MQL fluids based on polyol and polymeric esters for Ti-6Al-4 V machining and compares their performance with CCF. Cutting forces, surface roughness and topography are examined. Results show that MQL reduces cutting forces up to 21.7% and surface roughness up to 57.6% compared to CCF, with more uniform surface topography. Among MQL oils, polymeric esters perform better than polyol esters, with a reduction in cutting force up to 14.6% and surface roughness up to 47.7%. High viscosity indexed polymeric esters showed the best overall performance due to their thermal stability. Moreover, according to the sustainability assessment analysis polymeric esters were identified as the most sustainable option.
  • Conference Object
    Citation - Scopus: 1
    Enhancing Sustainable Machining of Inconel 718 Using Multi-Walled Carbon Nanotubes and TiO2based Nanofluid Minimum Quantity Lubrication
    (Elsevier B.V., 2025) Namlu, Ramazan Hakkı; Kaftanoĝlu, Bılgın
    Inconel 718 is extensively utilized especially in the aerospace sector due to its outstanding resistance to creep and corrosion, along with its capability to maintain strength at high temperatures. However, its high work hardening rate and low thermal conductivity present significant challenges in machining processes, including the need for extensive use of coolants, shortened tool life, and the necessity for post-processing operations for adequate surface quality, all of which hinder sustainable manufacturing. To address these issues, an innovative cooling/lubrication method, Nanofluid Minimum Quantity Lubrication (NMQL), aims to enhance the sustainable machining of Inconel 718 by minimizing these problems. NMQL involves the aerosolized delivery of nanoparticle-enriched nanofluid oil with compressed air to the cutting zone. In this way, NMQL utilizes the nanoparticles' cooling and lubrication abilities, resulting in lower cutting forces, reduced surface roughness, and decreased tool wear compared to other cooling/lubrication conditions, thereby improving machining performance. This study compares the performance of NMQL in terms of cutting forces, surface roughness and topography, and subsurface microhardness, using Multi-Walled Carbon Nanotubes (MWCNT) and TiO2nanoparticles, with Conventional Cutting Fluids (CCF), aiming to achieve more sustainable machining of Inconel 718. Also, a sustainability assessment was done using Pugh Matrix Approach in order to find the most sustainable cooling option. © 2025 Elsevier B.V., All rights reserved.