2 results
Search Results
Now showing 1 - 2 of 2
Conference Object Embryo Spatial Model Reconstruction(Springer international Publishing Ag, 2020) Dirvanauskas, Darius; Maskeliunas, Rytis; Raudonis, Vidas; Misra, SanjayTime lapse microscopy offered new solutions to study embryo development process. It allows embryologist to monitor embryo growth in real time and evaluate them without interfering into their growth environment. Embryo evaluation during growth process is one of the key criteria in embryo selection for fertilization. Live embryo monitoring is time consuming and new tools are offered to automate part of process. Our proposed algorithm gives new possibilities for embryo monitoring. It uses embryo images which are taken from different embryo layers, extracts embryo cell features and returns metrical evaluation to compare different embryos. High number of extracted features shows embryo fragmentation. Other tool whichwe present is spatial embryo model. Features extracted from embryo layers are combined together to spatial model. It allows embryologist to examine embryo model and compare different layers in one space. The obtained spatial embryo model will be later used to develop new algorithms for embryo analysis tasks.Article Citation - WoS: 5Citation - Scopus: 5Hierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machines(Springer, 2024) Yalcinkaya, Bengisu; Coruk, Remziye Busra; Kara, Ali; Tora, HakanAutomatic modulation classification (AMC) algorithms are crucial for various military and commercial applications. There have been numerous AMC algorithms reported in the literature, most of which focus on synthetic signals with a limited number of modulation types having distinctive constellations. The efficient classification of high-order modulation schemes under real propagation effects using models with low complexity still remains difficult. In this paper, employing quadratic SVM, a feature-based hierarchical classification method is proposed to accurately classify especially higher-order modulation schemes and its performance is investigated using over the air (OTA) collected data. Statistical features, higher-order moments, and higher-order cumulants are utilized as features. Then, the performances of some well-known classifiers are evaluated, and the classifier presenting the best performance is employed in the proposed hierarchical classification model. An OTA dataset containing 17 analog and digital modulation schemes is used to assess the performance of the proposed classification model. With the proposed hierarchical classification algorithm, a significant improvement has been achieved, especially in higher-order modulation schemes. The overall accuracy with the proposed hierarchical structure is 96% after 5 dB signal-to-noise ratio value, approximately a 10% increase is achieved compared to the traditional classification algorithm.

